Publications

Results 126–150 of 222

Search results

Jump to search filters

Mesoscale effective property simulations incorporating conductive binder

Journal of the Electrochemical Society

Trembacki, Bradley L.; Noble, David R.; Brunini, Victor; Ferraro, Mark E.; Roberts, Scott A.

Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.

More Details

Cabs Milestone I3 Report: Demonstration of Ability to Construct 3D Meshes of Electrodes Using Reconstructions from Micro-Tomography

Roberts, Scott A.; Ferraro, Mark E.

Mesoscale (100s of particles) electrochemical-thermal-mechanical models and simulations of NMC cathodes are a critical outcome of the CABS project. These simulations require mesostructure geometries and commensurate computational meshes on which to perform the simulations. While these geometries can be generated using a variety of methods, the highest-fidelity approach is to reconstruct the geometry directly from 3D experimental data/measurements. In this milestone report, we demonstrate our ability to create 3D computational meshes using the Conformal Decomposition Finite Element Method (CDFEM) on a selection of NMC cathodes that were imaged using X-Ray Computed Micro-Tomography (X-Ray CT, or simply XCT).

More Details
Results 126–150 of 222
Results 126–150 of 222