Color centers in diamond are one of the most promising tools for quantum information science. Of particular interest is the use of single-crystal diamond membranes with nanoscale-thickness as hosts for color centers. Indeed, such structures guarantee a better integration with a variety of other quantum materials or devices, which can aid the development of diamond-based quantum technologies, from nanophotonics to quantum sensing. A common approach for membrane production is what is known as “smart-cut”, a process where membranes are exfoliated from a diamond substrate after the creation of a thin sub-surface amorphous carbon layer by He+ implantation. Due to the high ion fluence required, this process can be time-consuming. In this work, we demonstrated the production of thin diamond membranes by neon implantation of diamond substrates. With the target of obtaining membranes of ~200 nm thickness and finding the critical damage threshold, we implanted different diamonds with 300 keV Ne+ ions at different fluences. We characterized the structural properties of the implanted diamonds and the resulting membranes through SEM, Raman spectroscopy, and photoluminescence spectroscopy. We also found that a SRIM model based on a two-layer diamond/sp2 -carbon target better describes ion implantation, allowing us to estimate the diamond critical damage threshold for Ne+ implantation. Compared to He+ smart-cut, the use of a heavier ion like Ne+ results in a ten-fold decrease in the ion fluence required to obtain diamond membranes and allows to obtain shallower smart-cuts, i.e. thinner membranes, at the same ion energy.
The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing. Recently, there have been a series of proposals and experiments using NV centers to detect spin noise of quantum materials near the diamond surface. This is a rich complex area of study with novel nano-magnetism and electronic behavior, that the NV center would be ideal for sensing. However, due to the electronic properties of the NV itself and its host material, getting high quality NV centers within nanometers of such systems is challenging. Band bending caused by space charges formed at the metal-semiconductor interface force the NV center into its insensitive charge states. Here, we investigate optimizing this interface by depositing thin metal films and thin insulating layers on a series of NV ensembles at different depths to characterize the impact of metal films on different ensemble depths. We find an improvement of coherence and dephasing times we attribute to ionization of other paramagnetic defects. The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing as compared to direct contact with the metal, providing as much as a factor of 2 increase in sensitivity, decrease of integration time by a factor of 4, for NV T 1 relaxometry measurements.
The recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications. In this paper, we used nitrogen-vacancy (NV) centers in diamond for wide-field magnetic imaging (with a few-mm field of view and micron-scale resolution) of magnetic fields from surface currents flowing in an APAM test device made of a P delta-doped layer on a Si substrate, a standard APAM witness material. We integrated a diamond having a surface NV ensemble with the device (patterned in two parallel mm-sized ribbons), then mapped the magnetic field from the DC current injected in the APAM device in a home-built NV wide-field microscope. The 2D magnetic field maps were used to reconstruct the surface current densities, allowing us to obtain information on current paths, device failures such as choke points where current flow is impeded, and current leakages outside the APAM-defined P-doped regions. Analysis on the current density reconstructed map showed a projected sensitivity of ∼0.03 A m−1, corresponding to a smallest-detectable current in the 200 μm wide APAM ribbon of ∼6 μA. These results demonstrate the failure analysis capability of NV wide-field magnetometry for APAM materials, opening the possibility to investigate other cutting-edge microelectronic devices.
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena, such as quantum phase criticality, magnetism, and superconductivity. With the emergence of nanoscale 2D materials with magnetic phenomena, inductively detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials. The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale. However, due to depth-dependent formation efficiency of the defect centers, noise from surface spins, band bending effects, and the depth dependence of the nuclear magnetic field, there is ambiguity regarding the ideal NV depth for surface NMR of statistically polarized spins. In this work, we prepared a range of shallow NV ensemble layer depths and determined the ideal NV depth by performing NMR spectroscopy on statistically polarized 19F in Fomblin oil on the diamond surface. We found that the measurement time needed to achieve a signal-to-noise ratio of 3 using XY8-N noise spectroscopy has a minimum at an NV ensemble depth of 5.5 ± 1.5 nm for ensembles activated from 100 ppm nitrogen concentration. To demonstrate the sensing capabilities of NV ensembles, we perform NQR spectroscopy on the 11B of hexagonal boron nitride flakes. We compare our best diamond to previous work with a single NV and find that this ensemble provides a shorter measurement time with excitation diameters as small as 4 μm. This analysis provides ideal conditions for further experiments involving NMR/NQR spectroscopy of 2D materials with magnetic properties.
Quantum diamond microscope (QDM) magnetic field imaging is an emerging interrogation and diagnostic technique for integrated circuits (ICs). To date, the ICs measured with a QDM have been either too complex for us to predict the expected magnetic fields and benchmark the QDM performance or too simple to be relevant to the IC community. In this paper, we establish a 555 timer IC as a "model system"to optimize QDM measurement implementation, benchmark performance, and assess IC device functionality. To validate the magnetic field images taken with a QDM, we use a spice electronic circuit simulator and finite-element analysis (FEA) to model the magnetic fields from the 555 die for two functional states. We compare the advantages and the results of three IC-diamond measurement methods, confirm that the measured and simulated magnetic images are consistent, identify the magnetic signatures of current paths within the device, and discuss using this model system to advance QDM magnetic imaging as an IC diagnostic tool.
Magnetic microscopy with high spatial resolution helps to solve a variety of technical problems in condensed-matter physics, electrical engineering, biomagnetism, and geomagnetism. In this work we used quantum diamond magnetic microscope (QDMM) setups, which use a dense uniform layer of magnetically-sensitive nitrogen-vacancy (NV) centers in diamond to image an external magnetic field using a fluorescence microscope. We used this technique for imaging few-micron ferromagnetic needles used as a physically unclonable function (PUF) and to passively interrogate electric current paths in a commercial 555 timer integrated circuit (IC). As part of the QDMM development, we also found a way to calculate ion implantation recipes to create diamond samples with dense uniform NV layers at the surface. This work opens the possibility for follow-up experiments with 2D magnetic materials, ion implantation, and electronics characterization and troubleshooting.
We describe a method to automatically generate an ion implantation recipe, a set of energies and fluences, to produce a desired defect density profile in a solid using the fewest required energies. We simulate defect density profiles for a range of ion energies, fit them with an appropriate function, and interpolate to yield defect density profiles at arbitrary ion energies. Given N energies, we then optimize a set of N energy-fluence pairs to match a given target defect density profile. Finally, we find the minimum N such that the error between the target defect density profile and the defect density profile generated by the N energy-fluence pairs is less than a given threshold. Inspired by quantum sensing applications with nitrogen-vacancy centers in diamond, we apply our technique to calculate optimal ion implantation recipes to create uniform-density 1 μm surface layers of 15N or vacancies (using 4He).
A physically unclonable function (PUF) is an embedded hardware security measure that provides protection against counterfeiting. In this article, we present our work on using an array of randomly magnetized micrometer-sized ferromagnetic bars (micromagnets) as a PUF. We employ a 4μm thick surface layer of nitrogen-vacancy (NV) centers in diamond to image the magnetic field from each micromagnet in the array, after which we extract the magnetic polarity of each micromagnet using image analysis techniques. Finally, after evaluating the randomness of the micromagnet array PUF and the sensitivity of the NV readout, we conclude by discussing the possible future enhancements for improved security and magnetic readout.