Publications

Results 76–100 of 120

Search results

Jump to search filters

Nanostructured material for advanced energy storage : magnesium battery cathode development

Bell, Nelson S.; Nagasubramanian, Ganesan N.

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

More Details

Direct-write, chemically-prepared temperature insensitive dielectrics

Hernandez-Sanchez, Bernadette A.; Lu, Ping L.; Garino, Terry J.; Sipola, Diana L.; Bell, Nelson S.; Wheeler, Jill S.

Development of high energy density dielectrics with low temperature coefficients of capacitance that are systems integrable are needed for extreme environment, defense and automotive applications. The synthesis of high purity chemically prepared Ca(Zr,Ti)O3 powders is described and has resulted in the lowering of conventional firing temperatures by over 100 C. Direct write aerosol spray deposition techniques have been used to fabricate high quality single layer and multilayer capacitors from these powders. The dielectric constants of the direct write capacitors are equivalent to those of fired bulk ceramics. Our presentation emphasizes the synthesis, phase evolution and microstructure development that has resulted in dielectrics with energy densities in excess of 3 J/cm3 with less than 1% change in dielectric constant over a 200 C temperature range.

More Details

Green chemical synthesis of silver nanomaterials with maltodextrin

Bell, Nelson S.; Lambert, Timothy N.; Lu, Ping L.; Tallant, David T.

Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation of metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).

More Details

Self-assembly of photo-reduced graphene-titania films

Washburn, Cody M.; Bell, Nelson S.; McKenzie, Bonnie B.; Brumbach, Michael T.

In an aim to develop photo-responsive composites, the UV photo-reduction of aqueous titanium oxide nanoparticle-graphene oxide (TiO{sub 2}-GO) dispersions (Lambert et al. J Phys. Chem. 2010 113 (46), 19812-19823) was undertaken. Photo-reduction led to the formation of a black precipitate as well as a soluble portion, comprised of titanium oxide nanoparticle-reduced graphene oxide (TiO{sub 2}-RGO). When allowed to slowly evaporate, self assembled titanium oxide nanoparticle-graphene oxide (SA-TiO{sub 2}-RGO) films formed at the air-liquid interface of the solution. The thickness of SARGO-TiO{sub 2} films range from {approx}30-100 nm when deposited on substrates, and appear to be comprised of a mosaic assembly of graphene nanosheets and TiO{sub 2}, as observed by scanning electron microscopy. Raman spectroscopy and X-ray photoelectron spectroscopy indicate that the graphene oxide is only partially reduced in the SA-TiO{sub 2}-RGO material. These films were also deposited onto inter-digitated electrodes and their photo-responsive behavior was examined. UV-exposure lead to a {approx} 200 kOhm decrease in resistance across the device, resulting in a cathodically biased film. The cathodic bias of the films was utilized for the subsequent reduction of Ag(NO{sub 3}) into silver (Ag) nanoparticles, forming a ternary Ag-(SA-RGO-TiO{sub 2}) composite. Various aspects of the self assembled films, their photoconductive properties as well as potential applications will be presented.

More Details

Nano-engineering by optically directed self-assembly

Grillet, Anne M.; Koehler, Timothy P.; Brotherton, Christopher M.; Bell, Nelson S.; Gorby, Allen D.; Reichert, Matthew D.; Brinker, C.J.; Bogart, Katherine B.

Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

More Details

Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01

Boyle, Timothy J.; Bell, Nelson S.; Sanchez, Margaret S.; Steele, Leigh A.

This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density, translucent LaBr{sub 3} ceramics samples (3-inch diameter, > 1/8-inch thick) were fabricated by hot pressing, demonstrating the superior manufacturability of the ceramic approach over single crystal growth methods in terms of size capability and cost. (6) Despite all these advances, evidence has shown that LaBr{sub 3} is thermally unstable at temperatures required for the densification process. This is particularly true for material near the surface where lattice defects and color centers can be created as bromine becomes volatile at high temperatures. Consequently, after densification these samples made using chemically prepared ultrafine powders turned black. An additional thermal treatment in a flowing bromine condition proved able to reduce the darkness of the surface layer for these densified samples. These observations demonstrated that although finer ceramic powders are desirable for densification due to a stronger driving force from their large surface areas, the same desirable factor can lead to lattice defects and color centers when these powders are densified at higher temperatures where material near the surface becomes thermally unstable.

More Details

Development of a model colloidal system for rheology simulation

Bell, Nelson S.; Tallant, David T.; Schunk, Randy; Frischknecht, Amalie F.

The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

More Details

Dispersion of titania nanoparticles in polydimethylsiloxane fluids using grafted low molecular weight polymers

Bell, Nelson S.; Frischknecht, Amalie F.

Nanoparticle interactions and their impact on particle dispersion and rheology are well known to be functions of the interfacial structure between the particle and the fluid phase. The dispersion and flow properties of a titania nanopowder were evaluated in polydimethylsiloxane fluid using ''grafted to'' surface modification of the titania with short molecular weight PDMS polymers. The interaction energy between particles was modeled using analytical expressions as well as dynamic functional theory for polymer surface chains. Particle dynamics as a function of volume fraction were characterized using light scattering, acoustic spectroscopy, and shear and oscillatory measurements. Autophobic dewetting is a novel short range interaction in this system that may be impacting the maximum packing fraction of particles in a suspension.

More Details
Results 76–100 of 120
Results 76–100 of 120