Crystal coherence length effects on the infrared optical response of MgO thin films
Applied Physics Letters
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Proposed for publication in Acta Crystallographica E.
In the title compound, C{sub 27}H{sub 17}N{sub 3}O{sub 4}, the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitrobenzene rings are 82.94 (7) and 7.30 (9){sup o}, respectively. In the crystal structure, weak C-H...O hydrogen bonds, likely associated with a dipole moment present on the molecule, help to consolidate the packing.
Inorganic Chemistry
The Na+ and [Cu(en)2(H2O) 2]2+ (en = ethylenediamine) salt of a pseudosandwich-type heteropolyniobate forms upon prolonged heating of Cu(NO3)2 and hydrated Na14[(SiOH)2Si2Nb 16O54] in a mixed water-en solution. The structure [a = 14.992(2) Å, b = 25.426(4) Å, c = 30.046(4) Å, orthorhombic, Pnn2, R1 = 6.04%, based on 25869 unique reflections] consists of two [Na(SiOH)2Si2Nb16O54]13- units linked by six sodium cations, and this sandwich is charge-balanced by five [Cu(en)2(H2O)2]2+ complexes, seven protons, and three additional sodium atoms (all per a sandwich-type cluster). Diffuse-reflectance UV-vis indicates that there is a λmax at 383 nm for the CuII d-d transition and the 29Si MAS NMR spectrum has two peaks at -78.2 ppm (151 Hz) and -75.5 ppm (257 Hz) for the two pairs of symmetry-equivalent internal [SiO4]4- and external [SiO3(OH)]3- tetrahedra, respectively. Unlike tungsten-based sandwich-type complexes, the [Na(SiOH)2Si 2Nb16O54]13- units are linked exclusively by Na+ instead of one or more d-electron metals. © 2008 American Chemical Society.
Abstract not provided.
Abstract not provided.
European Journal of Inorganic Chemistry
Abstract not provided.
Acta Crystallographica E: Structure Reports Online
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Journal of Applied Crystallography
In this study, (CFx)n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CFx)n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamic component which may be associated with the formation of an intermediate compound during the discharge process.
Journal of Alloys and Compounds
Abstract not provided.
Dalton Transactions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials Science and Technology Conference and Exhibition, MS and T'07 - "Exploring Structure, Processing, and Applications Across Multiple Materials Systems"
Pre-oxidized and glass-to-metal (GtM) sealed austenitic stainless steels were found to display a ferritic layer near the metal/oxide interface, as determined by electron backscatter diffraction (EBSD). Electron probe microanalysis (EPMA) showed that this layer was depleted in alloying elements due to the oxidation and sealing process. Characterization of the morphology suggested that it formed through the martensite transformation mechanism. Moreover, this observed layer was correlated to the composition gradient through published empirical relationships for martensite-start (Ms) temperatures. Due to Cr, Mn, and Si depletion during pre-oxidation and glass sealing, Ms temperatures near room temperature are possible in this surface region. Further support for a martensitic transformation was provided by thermochemical modeling. Possible detrimental ramifications of bulk composition, surface depletion, and phase transformations on GtM sealing are discussed. Copyright © 2007 MS&T'07®.
Abstract not provided.
Abstract not provided.
Proceedings of the 3rd International Brazing and Soldering Conference
The properties of energetic thin films considered for alternative braze[1] techniques are investigated. Vapor-deposited Ni/Ti multilayer foils having a net 1:1 stoichiometry exhibit self-propagating, high temperature combustion reactions. The rate of reaction depends on Ni/Ti multilayer design with steady-state propagation speeds of freestanding foils measured from 0.2 to 1.0m/s. Transmission electron microscopy and x-ray diffraction further show that NiTi films reacted in a self-propagating mode have a fine-grain, polycrystalline microstructure. All films are composed of cubic B2 and monoclinic B19' phases with some having NiTi2 or Ni3Ti precipitates. Copyright © 2006 ASM International®.
Abstract not provided.
Proposed for publication in the Journal of Applied Physics.
The stress evolution during electrodeposition of NiMn from a sulfamate-based bath was investigated as a function of Mn concentration and current density. The NiMn stress evolution with film thickness exhibited an initial high transitional stress region followed by a region of steady-state stress with a magnitude that depended on deposition rate, similar to the previously reported stress evolution in electrodeposited Ni [S. J. Hearne and J. A. Floro, J. Appl. Phys. 97, 014901-1 (2005)]. The incorporation of increasing amounts of Mn resulted in a linear increase in the steady-state stress at constant current density. However, no significant changes in the texture or grain size were observed, which indicates that an atomistic process is driving the changes in steady-state stress. Additionally, microstrain measured by ex situ x-ray diffraction increased with increasing Mn content, which was likely the result of localized lattice distortions associated with substitutional incorporation of Mn and/or increased twin density.
Proposed for publication in Acta Crystallographica Section E.
In the crystal structure of the title compound, C{sub 4}H{sub 4}N{sub 2}O{sub 3}, the packing is dominated by intermolecular carbonyl-carbonyl interactions and N-H...O hydrogen bonds.
Abstract not provided.
Proposed for publication in the Journal of Inorganic Chemistry.
Abstract not provided.
Ceramic Engineering and Science Proceedings
The impacts of small niobium additions to processing, microstructure, and electrical properties in the Zr-rich lead zirconate titanate ceramics (PZT 95/5) were investigated. The influence of niobium content on dielectric responses and the characteristics of ferroelectric behaviors, as well as the relative phase stability and the hydrostatic pressure induced ferroelectric-to- antiferroelectric phase transformation are reported. Results indicate that increasing the niobium concentration in the solid solutions enhances densification, refines the microstructure, decreases dielectric constant and spontaneous polarization, and stabilizes the ferroelectric phase. The stabilization of ferroelectric phase with respect to the antiferroelectric phase near PZT 95/5 composition dramatically increases the pressure required for the ferroelectric-to-antiferroelectric phase transformation. These observations were correlated to the creation of A-site vacancies and a slight modification of the crystal structure. The importance of these composition-property relationships on device application will be presented.