Publications

Results 1–25 of 115

Search results

Jump to search filters

X-ray powder diffraction study of La2LiTaO6

Powder Diffraction

Rodriguez, M.A.; Griego, James J.M.; Brown-Shaklee, Harlan J.; Blea-Kirby, Mia A.; Ihlefeld, Jon I.; Spoerke, Erik D.

The structure of La2LiTaO6 has been derived from the powder X-ray powder diffraction (XRD) data. La2LiTaO6 is monoclinic with unit-cell parameters a = 5.621(1) Å, b = 5.776(1) Å, c = 7.954(2) Å, β = 90.34(2)°, space group P21/n (14), and Z = 2. The structure of La2LiTaO6 is an ordered perovskite with alternating Li and Ta octahedra. A new set of powder XRD data (d-spacing and intensity listing) has been generated to replace entry 00-039-0897 within the Powder Diffraction File. The newly elucidated structural data for La2LiTaO6 shall facilitate quantitative analysis of this impurity phase which is often observed during synthesis of the fast-ion conductor phase Li5La3Ta2O12.

More Details

In-situ monitoring of vanadium dioxide formation using high-temperature XRD

Powder Diffraction

Rodriguez, M.A.; Bell, Nelson S.; Griego, James J.M.; Edney, Cynthia E.; Clem, Paul G.

The monoclinic-to-tetragonal phase transition (∼70 °C) in vanadium dioxide (VO2) strongly impacts the infrared properties, which enables its use in applications such as smart window devices. Synthesis of VO 2 can be challenging due to the variability of vanadium oxide phases that may be formed. We have employed high-temperature X-ray diffraction (HTXRD) to monitor the reaction process of vanadium oxide precursor powders to form the desired tetragonal VO2 phase. Single-phase tetragonal VO2 was formed within 30 min at 420 °C in flowing N2 gas (∼50 ppm O2). The monoclinic-to-tetragonal phase transformation was observed via HTXRD at ∼70 °C with the typical ∼10 °C hysteresis (i.e. approached from above or below the transition). © International Centre for Diffraction Data 2014.

More Details

Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone

Heath, Jason; Bauer, Stephen J.; Broome, Scott T.; Dewers, Thomas D.; Rodriguez, M.A.

The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

More Details

Optimization of sintered AgI-mordenite composites for129I storage

International Nuclear Fuel Cycle Conference, GLOBAL 2013: Nuclear Energy at a Crossroads

Garino, Terry J.; Nenoff, T.M.; Rodriguez, M.A.; Mowry, Curtis D.; Rademacher, David R.

The thermal processing of a proposed durable waste form for 129I was investigated. The waste form is a composite with a matrix of low-temperature sintering glass that encapsulates particles of AgI-mordenite. Ag-mordenite, an ion-exchanged zeolite, is being considered as a capture medium for gaseous 129I2 as part of a spent nuclear fuel reprocessing scheme under development by the US Department of Energy/Nuclear Energy (NE). The thermal processing of the waste form is necessary to densify the glass matrix by viscous sintering so that the final waste form does not have any open porosity. Other processes that can also occur during the thermal treatment include desorption of chemisorbed I2, volatilization of AgI and crystallization of the glass matrix. We have optimized the thermal processing to achieve the desired high density with higher AgI-mordenite loading levels and with minimal loss of iodine. Using these conditions, 625°C for 20 minutes, the matrix crystallizes to form a eulytite phase. Results of durability tests indicate that the matrix crystallization does not significantly decrease the durability in aqueous environments.

More Details

Elpasolite scintillators

Doty, Fred P.; Yang, Pin Y.; Zhou, Xiaowang Z.; Rodriguez, M.A.

This work was funded by the U.S. Department of Energy Office of Nonproliferation Research to develop elpasolite materials, with an emphasis on high-atomic-number rare-earth elpasolites for gamma-ray spectrometer applications. Low-cost, high-performance gamma-ray spectrometers are needed for detection of nuclear proliferation. Cubic materials, such as some members of the elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise due to their high light output, proportionality, and potential for scale-up. Using both computational and experimental studies, a systematic investigation of the compositionstructureproperty relationships of these high-atomic-number elpasolite halides was performed. The results reduce the barrier to commercialization of large single crystals or transparent ceramics, and will facilitate economical scale-up of elpasolites for high-sensitivity gamma-ray spectroscopy.

More Details
Results 1–25 of 115
Results 1–25 of 115