Publications

Results 51–100 of 273

Search results

Jump to search filters

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Xiong, Yongliang; Choens II, Robert C.; Paul, Matthew J.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Otto, Shawn; Davis, Jon; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Wang, Jiannan

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove-Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda; Mills, Melissa M.; Kruichak-Duhigg, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny; Guglielmi, Yves; Sasaki, Tsubasa; Deng, Hang; Li, Pei; Steefel, Carl I.; Tournassat, Christophe; Xu, Hao; Babhulgaonkar, Shaswat; Birkholzer, Jens; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Wainwright, Haruko

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.

More Details

Uncoupling Electrokinetic Flow Solutions

Mathematical Geosciences

Kuhlman, Kristopher L.; Malama, Bwalya

The continuum-scale electrokinetic porous-media flow and excess charge redistribution equations are uncoupled using eigenvalue decomposition. The uncoupling results in a pair of independent diffusion equations for “intermediate” potentials subject to modified material properties and boundary conditions. The fluid pressure and electrostatic potential are then found by recombining the solutions to the two intermediate uncoupled problems in a matrix-vector multiplication. Expressions for the material properties or source terms in the intermediate uncoupled problem may require extended precision or careful rewriting to avoid numerical cancellation, but the solutions themselves can typically be computed in double precision. The approach works with analytical or gridded numerical solutions and is illustrated through two examples. The solution for flow to a pumping well is manipulated to predict streaming potential and electroosmosis, and a periodic one-dimensional analytical solution is derived and used to predict electroosmosis and streaming potential in a laboratory flow cell subjected to low frequency alternating current and pressure excitation. The examples illustrate the utility of the eigenvalue decoupling approach, repurposing existing analytical solutions or numerical models and leveraging solutions that are simpler to derive for coupled physics.

More Details

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.; Stein, Emily; Gross, Mike

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

Utilizing Environmental Tracers to Reduce Groundwater Flow and Transport Model Parameter Uncertainties

Water Resources Research

Thiros, Nicholas E.; Gardner, W.P.; Kuhlman, Kristopher L.

Non-uniqueness in groundwater model calibration is a primary source of uncertainty in groundwater flow and transport predictions. In this study, we investigate the ability of environmental tracer information to constrain groundwater model parameters. We utilize a pilot point calibration procedure conditioned to subsets of observed data including: liquid pressures, tritium (3H), chlorofluorocarbon-12 (CFC-12), and sulfur hexafluoride (SF6) concentrations; and groundwater apparent ages inferred from these environmental tracers, to quantify uncertainties in the heterogeneous permeability fields and infiltration rates of a steady-state 2-D synthetic aquifer and a transient 3-D model of a field site located near Riverton, Wyoming (USA). To identify the relative data worth of each observation data type, the post-calibration uncertainties of the optimal parameters for a given observation subset are compared to that from the full observation data set. Our results suggest that the calibration-constrained permeability field uncertainties are largest when liquid pressures are used as the sole calibration data set. We find significant reduction in permeability uncertainty and increased predictive accuracy when the environmental tracer concentrations, rather than apparent groundwater ages, are used as calibration targets in the synthetic model. Calibration of the Riverton field site model using environmental tracer concentrations directly produces infiltration rate estimates with the lowest uncertainties, however; permeability field uncertainties remain similar between the environmental tracer concentration and apparent groundwater age calibration scenarios. This work provides insight on the data worth of environmental tracer information to calibrate groundwater models and highlights potential benefits of directly assimilating environmental tracer concentrations into model parameter estimation procedures.

More Details

Multicontinuum Flow Models for Assessing Two-Phase Flow in Containment Science

Kuhlman, Kristopher L.; Heath, Jason E.

We present a new pre-processor tool written in Python that creates multicontinuum meshes for PFLOTRAN to simulate two-phase flow and transport in both the fracture and matrix continua. We discuss the multicontinuum modeling approach to simulate potentially mobile water and gas in the fractured volcanic tuffs at Aqueduct Mesa, at the Nevada National Security Site.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove-Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda; Mills, Melissa M.; Kruichak-Duhigg, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Heterogeneous multiphase flow properties of volcanic rocks and implications for noble gas transport from underground nuclear explosions

Vadose Zone Journal

Heath, Jason E.; Kuhlman, Kristopher L.; Broome, Scott T.; Wilson, Jennifer E.; Malama, Bwalya

Of interest to the Underground Nuclear Explosion Signatures Experiment are patterns and timing of explosion-generated noble gases that reach the land surface. The impact of potentially simultaneous flow of water and gas on noble gas transport in heterogeneous fractured rock is a current scientific knowledge gap. This article presents field and laboratory data to constrain and justify a triple continua conceptual model with multimodal multiphase fluid flow constitutive equations that represents host rock matrix, natural fractures, and induced fractures from past underground nuclear explosions (UNEs) at Aqueduct and Pahute Mesas, Nevada National Security Site, Nevada, USA. Capillary pressure from mercury intrusion and direct air–water measurements on volcanic tuff core samples exhibit extreme spatial heterogeneity (i.e., variation over multiple orders of magnitude). Petrographic observations indicate that heterogeneity derives from multimodal pore structures in ash-flow tuff components and post-depositional alteration processes. Comparisons of pre- and post-UNE samples reveal different pore size distributions that are due in part to microfractures. Capillary pressure relationships require a multimodal van Genuchten (VG) constitutive model to best fit the data. Relative permeability estimations based on unimodal VG fits to capillary pressure can be different from those based on bimodal VG fits, implying the choice of unimodal vs. bimodal fits may greatly affect flow and transport predictions of noble gas signatures. The range in measured capillary pressure and predicted relative permeability curves for a given lithology and between lithologies highlights the need for future modeling to consider spatially distributed properties.

More Details

Pore-Scale Modeling of Electrokinetics in Geomaterials

Transport in Porous Media

Priya, Pikee; Kuhlman, Kristopher L.; Aluru, Narayana R.

Pore-scale finite-volume continuum models of electrokinetic processes are used to predict the Debye lengths, velocity, and potential profiles for two-dimensional arrays of circles, ellipses and squares with different orientations. The pore-scale continuum model solves the coupled Navier–Stokes, Poisson, and Nernst–Planck equations to characterize the electro-osmotic pressure and streaming potentials developed on the application of an external voltage and pressure difference, respectively. This model is used to predict the macroscale permeabilities of geomaterials via the widely used Carmen–Kozeny equation and through the electrokinetic coupling coefficients. The permeability results for a two-dimensional X-ray tomography-derived sand microstructure are within the same order of magnitude as the experimentally calculated values. The effect of the particle aspect ratio and orientation on the electrokinetic coupling coefficients and subsequently the electrical and hydraulic tortuosity of the porous media has been determined. These calculations suggest a highly tortuous geomaterial can be efficient for applications like decontamination and desalination.

More Details

X-ray Computed Tomography on UNESE Core: FY2020 Data Report to Support Fracture and Multiphase Fluid Flow Studies

Heath, Jason E.; Bower, John E.; Wilson, Jennifer E.; Kuhlman, Kristopher L.; Broome, Scott T.

Natural and induced fractures are potential preferential pathways for migration of radioactive gases to earths surface from underground nuclear explosions (UNEs). This report documents X-ray computed tomography (XRCT) imaging on 26 samples of rock core that was collected to support the Underground Nuclear Explosion Signatures Experiment (UNESE) program. The XRCT datasets are intended to help fill a data gap on the three-dimensional (3D) characteristics of natural and/or induced fractures at the centimeter and smaller scale, which may strongly influence multiphase fluid flow and transport properties of preferential flow paths and interaction with the matrix of the surrounding host rock. Pre- and post-UNE rock samples were carefully chosen to enable comparison of fractures as a function of lithologic and petrophysical properties, as well as distance to the past UNEs. This report serves as documentation for the data, including an introduction with the research motivation, a methods and materials section, descriptions of the XRCT datasets without post-processing, and recommendations for 3D quantification via image analysis and digital rock physics.

More Details

Generic FEPs Catalogue and Salt Knowledge Archive

Freeze, Geoffrey; Sevougian, S.D.; Kuhlman, Kristopher L.; Gross, Mike; Wolf, Jens; Buhmann, Dieter; Bartol, Jeroen; Leigh, Christi; Monig, Jorg

This report describes the development of a comprehensive catalogue of generic features, events, and processes (FEPs) that are potentially important for the post-closure performance of a repository for high-level radioactive waste (HLW) and spent nuclear fuel (SNF) in salt (halite) host rock. The FEPs and other supporting information have been entered into a “SaltFEP” Database. The generic salt repository FEPs include consideration of relevant FEPs from a number of U.S., Dutch, German, and international FEP lists and should be a suitable starting point for any repository program in salt host rock. The salt FEP catalogue and database employ a FEP classification matrix approach that is based on the concept that a FEP is typically a process or event acting upon or within a feature. The FEP matrix provides a two-dimensional structure consisting of a Features/Components axis that defines the “rows” and a Processes/Events axis that defines the “columns” of the matrix. The design of the FEP classification matrix is consistent with repository performance assessment – the Features/Components axis is organized vertically to generally correspond to the direction of potential radionuclide migration (from the waste to the biosphere) and the Processes/Events axis is designed to represent the common two-way couplings between thermal processes and other processes (such as thermal-mechanical or thermal-hydrologic processes). Related FEPs can be easily identified – related FEPs will typically be grouped in a single matrix cell or aligned along a common row (Feature/Component) or column (Process/Event). The online SaltFEP database can be downloaded from www.saltfep.org. It contains the FEP matrix, the FEPs, and the associated processes for each FEP. It provides a starting point to create and document site-specific individual FEPs. Furthermore, the FEP matrix is connected to the Salt Knowledge Archive (SKA), a database of about 20,000 references and documents representing the historical knowledge on radioactive disposal in salt. This work is the result of an ongoing collaboration between researchers in the U.S., the Netherlands, and Germany, and supports the NEA Salt Club Mandate. It builds upon prior work which is documented.

More Details

Utilizing temperature and brine inflow measurements to constrain reservoir parameters during a salt heater test

Minerals

Jayne, Richard; Kuhlman, Kristopher L.

Brine availability in salt has multiple implications for the safety and design of a nuclear waste storage facility. Brine availability includes both the distribution and transport of brine through a damaged zone around boreholes or drifts excavated into the salt. Coupled thermal, hydrological, mechanical, and chemical processes taking place within heated bedded salt are complex; as part of DECOVALEX 2023 Task E this study takes a parsimonious modeling approach utilizing analytical and numerical one-dimensional simulations to match field measurements of temperature and brine inflow around a heater. The one-dimensional modeling results presented arrive at best-fit thermal conductivity of intact salt, and the permeability and porosity of damaged salt of 5.74 W/m · K, 10−17 m2, and ≈0.02, respectively.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Herrick, Courtney G.; Choens II, Robert C.; Nemer, Martin; Heath, Jason E.; Matteo, Edward N.; Xiong, Yongliang; Otto, Shawn; Dozier, Brian; Weaver, Doug; Stauffer, Phil; Guiltinan, Eric; Boukhalfa, Hakim; Rahn, Thom; Wu, Yuxin; Rutqvist, Jonny; Hu, Mengsu; Crandall, Dustin

Abstract not provided.

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul; Nole, Michael A.; Basurto, Eduardo; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert; Eckert, Aubrey; Ebeida, Mohamed; Gross, Mike; Hammond, Glenn; Harvey, Jacob A.; Jordan, Spencer H.; Kuhlman, Kristopher L.; Laforce, Tara C.; Leone, Rosemary C.; Mclendon, William; Mills, Melissa M.; Park, Heeho D.; Foulk, James W.; Foulk, James W.; Seidl, D.T.; David, Sevougian; Stein, Emily; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

Characterization and Sampling of Ultralow Permeability Geomaterials using Electrokinetics (LDRD Final Report 209234)

Kuhlman, Kristopher L.; Mills, Melissa M.; Priya, Pikee; Aluru, Narayana

This final report on Laboratory Directed Research and Development (LDRD) project 209234 presents background material for electrokinetics at the pore and porous media scales. We present some theoretical developments related to uncoupling electrokinetic flow solutions, from a manuscript recently accepted into Mathematical Geosciences for publication. We present a summary of two pore-scale modeling efforts undertaken as part of the academic alliance with University of Illinois, resulting in one already submitted journal publication to Transport in Porous Media and another in preparation for submission to a journal. We finally show the laboratory apparatus built in Laboratory B59 in Building 823 and discuss some of the issues that occurred with it.

More Details

FY20 Update on Brine Availability Test in Salt. Revision 4

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Heath, Jason E.; Xiong, Yongliang; Choens II, Robert C.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the 2020 fiscal year (FY20) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-two milestone number M2SF-20SNO10303032. This report is an update of an August 2019 level-three milestone report to present the final as-built description of the test and the first phase of operational data (BATS la, January to March 2020) from the Brine Availability Test in Salt (BATS) field test.

More Details

International Collaborations on Radioactive Waste Disposal in Salt (FY20)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.; Stein, Emily; Gross, Mike

This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

An Experimental Method to Measure Gaseous Diffusivity in Tight and Partially Saturated Porous Media via Continuously Monitored Mass Spectrometry

Transport in Porous Media

Paul, Matthew J.; Broome, Scott T.; Kuhlman, Kristopher L.; Feldman, Joshua D.; Heath, Jason E.

Detection of radioxenon and radioargon produced by underground nuclear explosions is one of the primary methods by which the Comprehensive Nuclear-Test–Ban Treaty (CTBT) monitors for nuclear activities. However, transport of these noble gases to the surface via barometric pumping is a complex process relying on advective and diffusive processes in a fractured porous medium to bring detectable levels to the surface. To better understand this process, experimental measurements of noble gas and chemical surrogate diffusivity in relevant lithologies are necessary. However, measurement of noble gas diffusivity in tight or partially saturated porous media is challenging due to the transparent nature of noble gases, the lengthy diffusion times, and difficulty maintaining consistent water saturation. Here, the quasi-steady-state Ney–Armistead method is modified to accommodate continuous gas sampling via effusive flow to a mass spectrometer. An analytical solution accounting for the cumulative sampling losses and induced advective flow is then derived. Experimental results appear in good agreement with the proposed theory, suggesting the presence of retained groundwater reduces the effective diffusivity of the gas tracers by 10–1000 times. Furthermore, by using a mass spectrometer, the method described herein is applicable to a broad range of gas species and porous media.

More Details
Results 51–100 of 273
Results 51–100 of 273