Learning Why: Data-Driven Causal Evaluations of Climate Models
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Results in Applied Mathematics
Component coupling is a crucial part of climate models, such as DOE's E3SM (Caldwell et al., 2019). A common coupling strategy in climate models is for their components to exchange flux data from the previous time-step. This approach effectively performs a single step of an iterative solution method for the monolithic coupled system, which may lead to instabilities and loss of accuracy. In this paper we formulate an Interface-Flux-Recovery (IFR) coupling method which improves upon the conventional coupling techniques in climate models. IFR starts from a monolithic formulation of the coupled discrete problem and then uses a Schur complement to obtain an accurate approximation of the flux across the interface between the model components. This decouples the individual components and allows one to solve them independently by using schemes that are optimized for each component. To demonstrate the feasibility of the method, we apply IFR to a simplified ocean–atmosphere model for heat-exchange coupled through the so-called bulk condition, common in ocean–atmosphere systems. We then solve this model on matching and non-matching grids to estimate numerically the convergence rates of the IFR coupling scheme.
Abstract not provided.
The interplay of a rapidly changing climate and infectious disease occurrence is emerging as a critical topic, requiring investigation of possible direct, as well as indirect, connections between disease processes and climate-related variation and phenomena. First, we introduce and overview three infectious disease exemplars (dengue, influenza, valley fever) representing different transmission classes (insect-vectored, human-to-human, environmentally-transmitted) to illuminate the complex and significant interplay between climate disease processes, as well as to motivate discussion of how Sandia can transform the field, and change our understanding of climate-driven infectious disease spread. We also review state-of-the-art epidemiological and climate modeling approaches, together with data analytics and machine learning methods, potentially relevant to climate and infectious disease studies. We synthesize the modeling and disease exemplars information, suggesting initial avenues for research and development (R&D) in this area, and propose potential sponsors for this work. Whether directly or indirectly, it is certain that a rapidly changing climate will alter global disease burden. The trajectory of climate change is an important control on this burden, from local, to regional and global scales. The efforts proposed herein respond to the National Research Councils call for the creation of a multidisciplinary institute that would address critical aspects of these interlocking, cascading crises.
The Arctic is warming and feedbacks in the coupled Earth system may be driving the Arctic to tipping events that could have critical downstream impacts for the rest of the globe. In this project we have focused on analyzing sea ice variability and loss in the coupled Earth system Summer sea ice loss is happening rapidly and although the loss may be smooth and reversible, it has significant consequences for other Arctic systems as well as geopolitical and economic implications. Accurate seasonal predictions of sea ice minimum extent and long-term estimates of timing for a seasonally ice-free Arctic depend on a better understanding of the factors influencing sea ice dynamics and variation in this strongly coupled system. Under this project we have investigated the most influential factors in accurate predictions of September Arctic sea ice extent using machine learning models trained separately on observational data and on simulation data from five E3SM historical ensembles. Monthly averaged data from June, July, and August for a selection of ice, ocean, and atmosphere variables were used to train a random forest regression model. Gini importance measures were computed for each input feature with the testing data. We found that sea ice volume is most important earlier in the season (June) and sea ice extent became a more important predictor closer to September. Results from this study provide insight into how feature importance changes with forecast length and illustrates differences between observational data and simulated Earth system data. We have additionally performed a global sensitivity analysis (GSA) using a fully coupled ultra- low resolution configuration E3SM. To our knowledge, this is the first global sensitivity analysis involving the fully-coupled E3SM Earth system model. We have found that parameter variations show significant impact on the Arctic climate state and atmospheric parameters related to cloud parameterizations are the most significant. We also find significant interactions between parameters from different components of E3SM. The results of this study provide invaluable insight into the relative importance of various parameters from the sea ice, atmosphere and ocean components of the E3SM (including cross-component parameter interactions) on various Arctic-focused quantities of interest (QOIs).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
In this paper, we continue our efforts to exploit optimization and control ideas as a common foundation for the development of property-preserving numerical methods. Here we focus on a class of scalar advection equations whose solutions have fixed mass in a given Eulerian region and constant bounds in any Lagrangian volume. Our approach separates discretization of the equations from the preservation of their solution properties by treating the latter as optimization constraints. This relieves the discretization process from having to comply with additional restrictions and makes stability and accuracy the sole considerations in its design. A property-preserving solution is then sought as a state that minimizes the distance to an optimally accurate but not property-preserving target solution computed by the scheme, subject to constraints enforcing discrete proxies of the desired properties. Furthermore, we consider two such formulations in which the optimization variables are given by the nodal solution values and suitably defined nodal fluxes, respectively. A key result of the paper reveals that a standard Algebraic Flux Correction (AFC) scheme is a modified version of the second formulation obtained by shrinking its feasible set to a hypercube. In conclusion, we present numerical studies illustrating the optimization-based formulations and comparing them with AFC
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.
Abstract not provided.
Computers and Mathematics with Applications
Traditional explicit partitioned schemes exchange boundary conditions between subdomains and can be related to iterative solution methods for the coupled problem. As a result, these schemes may require multiple subdomain solves, acceleration techniques, or optimized transmission conditions to achieve sufficient accuracy and/or stability. We present a new synchronous partitioned method derived from a well-posed mixed finite element formulation of the coupled problem. We transform the resulting Differential Algebraic Equation (DAE) to a Hessenberg index-1 form in which the algebraic equation defines the Lagrange multiplier as an implicit function of the states. Using this fact we eliminate the multiplier and reduce the DAE to a system of explicit ODEs for the states. Explicit time integration both discretizes this system in time and decouples its equations. As a result, the temporal accuracy and stability of our formulation are governed solely by the accuracy and stability of the explicit scheme employed and are not subject to additional stability considerations as in traditional partitioned schemes. We establish sufficient conditions for the formulation to be well-posed and prove that classical mortar finite elements on the interface are a stable choice for the Lagrange multiplier. We show that in this case the condition number of the Schur complement involved in the elimination of the multiplier is bounded by a constant. The paper concludes with numerical examples illustrating the approach for two different interface problems.