Publications

Results 76–100 of 139

Search results

Jump to search filters

Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

Wind Energy

Griffith, Daniel G.; Resor, Brian R.; Paquette, Joshua P.

Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

More Details

Blade reliability collaborative :

Ogilvie, Alistair O.; Paquette, Joshua P.

The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

More Details

Structural health and prognostics management for offshore wind turbines :

Griffith, Daniel G.; Resor, Brian R.; White, Jonathan; Paquette, Joshua P.

Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

More Details

Simulating the entire life of an offshore wind turbine

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Barone, Matthew; Paquette, Joshua P.; Resor, Brian R.; Manuel, Lance; Nguyen, Hieu

Sixty-three years of aero-hydro-elastic loads simulations are demonstrated for a 5 MW offshore wind turbine deployed in shallow water. This large amount of simulation was made possible through the use of a high-performance computing cluster. The resulting one-hour extreme load distributions are examined; the extensive number of one-hour realizations allows for direct estimation of fifty-year return loads, without resorting to extrapolation. This type of simulation study opens up new possibilities for developing wind turbine design standards and discovering physical mechanisms that lead to extreme loads on wind turbine components.

More Details

Innovative offshore vertical-axis wind turbine rotor project

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Paquette, Joshua P.; Barone, Matthew F.

A research project has recently begun to explore the viability of vertical axis wind turbines (VAWT) for future U.S. offshore installations, especially in resource-rich, deep-water locations. VAWTs may offer reductions in cost across multiple categories, including operations and maintenance (O&M), support structure, installation, and electrical infrastructure costs. The cost of energy (COE) reduction opportunities follow from three fundamental characteristics of the VAWT: lower turbine center of gravity, reduced machine complexity, and the opportunity for scaling the machine to very large sizes (10-20 MW). This paper discusses why VAWTs should be considered for offshore installation, describes the project that has been created to explore this prospect, and gives some early results from the project. These results indicate a potential for COE reduction of over 20%.

More Details
Results 76–100 of 139
Results 76–100 of 139