We propose a vertical TFET using atomic precision advanced manufacturing (APAM) to create an abrupt buried n++-doped source. We developed a gate stack that preserves the APAM source to accumulate holes above it, with a goal of band-to-band tunneling (BTBT) perpendicular to the gate – critical for the proposed device. A metal-insulator-semiconductor (MIS) capacitor shows hole accumulation above the APAM source, corroborated by simulation, demonstrating the TFET’s feasibility.
We employ a fully charge self-consistent quantum transport formalism, together with a heuristic elastic scattering model, to study the local density of state (LDOS) and the conductive properties of Si:P δ-layer wires at the cryogenic temperature of 4 K. The simulations allow us to explain the origin of shallow conducting sub-bands, recently observed in high resolution angle-resolved photoemission spectroscopy experiments. Our LDOS analysis shows the free electrons are spatially separated in layers with different average kinetic energies, which, along with elastic scattering, must be accounted for to reproduce the sheet resistance values obtained over a wide range of the δ-layer donor densities.
One big challenge of the emerging atomic precision advanced manufacturing (APAM) technology for microelectronics application is to realize APAM devices that operate at room temperature (RT). We demonstrate that semiclassical technology computer aided design (TCAD) device simulation tool can be employed to understand current leakage and improve APAM device design for RT operation. To establish the applicability of semiclassical simulation, we first show that a semiclassical impurity scattering model with the Fermi-Dirac statistics can explain the very low mobility in APAM devices quite well; we also show semiclassical TCAD reproduces measured sheet resistances when proper mobility values are used. We then apply semiclassical TCAD to simulate current leakage in realistic APAM wires. With insights from modeling, we were able to improve device design, fabricate Hall bars, and demonstrate RT operation for the very first time.
The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with sub-nanometer precision, typically for quantum physics demonstrations, and to dope silicon past the solid-solubility limit, with potential applications in microelectronics and plasmonics. However, this process, which we call atomic precision advanced manufacturing (APAM), currently lacks the throughput required to develop sophisticated applications because there is no proven scalable hydrogen lithography pathway. Here, we demonstrate and characterize an APAM device workflow where STM lithography has been replaced with photolithography. An ultraviolet laser is shown to locally heat silicon controllably above the temperature required for hydrogen depassivation. STM images indicate a narrow range of laser energy density where hydrogen has been depassivated, and the surface remains well-ordered. A model for photothermal heating of silicon predicts a local temperature which is consistent with atomic-scale STM images of the photo-patterned regions. Finally, a simple device made by exposing photo-depassivated silicon to phosphine is found to have a carrier density and mobility similar to that produced by similar devices patterned by STM.