Publications

Results 26–50 of 193

Search results

Jump to search filters

Analysis of the dependence of critical electric field on semiconductor bandgap

Journal of Materials Research

Slobodyan, Oleksiy; Flicker, Jack D.; Dickerson, Jeramy; Shoemaker, Jonah; Binder, Andrew; Smith, Trevor; Goodnick, Stephen; Kaplar, Robert; Hollis, Mark

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

More Details

Identification of the defect dominating high temperature reverse leakage current in vertical GaN power diodes through deep level transient spectroscopy

Applied Physics Letters

Dasgupta, Sandeepan; Slobodyan, O.; Smith, Trevor; Binder, Andrew; Flicker, Jack D.; Kaplar, Robert; Mueller, Jacob A.; Rodriguez, Luciano G.; Atcitty, Stanley

Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. We use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ∼1500 V. DLTS reveals three energy levels that are at ∼0.6 eV (highest density), ∼0.27 eV (lowest density), and ∼45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance-voltage measurement tests (C-V) at multiple temperatures enables trap density evaluation, and the ∼0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

More Details

Progress in Fabrication and Characterization of Vertical GaN Power Devices (invited)

Kaplar, Robert; Binder, Andrew; Crawford, Mary H.; Allerman, A.A.; Gunning, Brendan P.; Flicker, Jack D.; Yates, Luke; Armstrong, Andrew A.; Dickerson, Jeramy; Glaser, Caleb E.; Steinfeldt, Jeffrey A.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Inverter Reliability Estimation for Advanced Inverter Functionality

Conference Record of the IEEE Photovoltaic Specialists Conference

Flicker, Jack D.; Johnson, Jay; Reno, Matthew J.; Azzolini, Joseph A.; Hacke, Peter; Thiagarajan, Ramanathan

In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous modes, which will produce new stresses on the grid-interfacing power electronics components, such as DC/AC inverters. In previous work, multiple DER devices were instrumented to evaluate additional component stress under multiple reactive power setpoints. We utilize quasi-static time-series simulations to determine voltage-reactive power mode (volt-var) mission profile of inverters in an active power system. Mission profiles and loss estimates are then combined to estimate the reduction of the useful life of inverters from different reactive power profiles. It was found that the average lifetime reduction was approximately 0.15% for an inverter between standard unity power factor operation and the IEEE 1547 default volt-var curve based on thermal damage due to switching in the power transistors. For an inverter with an expected 20-year lifetime, the 1547 volt-var curve would reduce the expected life of the device by 12 days. This framework for determining an inverter's useful life from experimental and modeling data can be applied to any failure mechanism and advanced inverter operation.

More Details

Reverse Breakdown Time of Wide Bandgap Diodes

2022 IEEE 9th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2022

Flicker, Jack D.; Schrock, Emily A.; Kaplar, Robert

In order to evaluate the time evolution of avalanche breakdown in wide and ultra-wide bandgap devices, we have developed a cable pulser experimental setup that can evaluate the time-evolution of the terminating impedance for a semiconductor device with a time resolution of 130 ps. We have utilized this pulser setup to evaluate the time-to-breakdown of vertical Gallium Nitride and Silicon Carbide diodes for possible use as protection elements in the electrical grid against fast transient voltage pulses (such as those induced by an electromagnetic pulse event). We have found that the Gallium Nitride device demonstrated faster dynamics compared to the Silicon Carbide device, achieving 90% conduction within 1.37 ns compared to the SiC device response time of 2.98 ns. While the Gallium Nitride device did not demonstrate significant dependence of breakdown time with applied voltage, the Silicon Carbide device breakdown time was strongly dependent on applied voltage, ranging from a value of 2.97 ns at 1.33 kV to 0.78 ns at 2.6 kV. The fast response time (< 5 ns) of both the Gallium Nitride and Silicon Carbide devices indicate that both materials systems could meet the stringent response time requirements and may be appropriate for implementation as protection elements against electromagnetic pulse transients.

More Details

Study of Avalanche Behavior in 3 kV GaN Vertical P-N Diode Under UIS Stress for Edge-termination Optimization

IEEE International Reliability Physics Symposium Proceedings

Shankar, Bhawani; Bian, Zhengliang; Zeng, Ke; Meng, Chuanzhe; Martinez, Rafael P.; Chowdhury, Srabanti; Gunning, Brendan P.; Flicker, Jack D.; Binder, Andrew; Dickerson, Jeramy; Kaplar, Robert

This work investigates both avalanche behavior and failure mechanism of 3 kV GaN-on-GaN vertical P-N diodes, that were fabricated and later tested under unclamped inductive switching (UIS) stress. The goal of this study is to use the particular avalanche characteristics and the failure mechanism to identify issues with the field termination and then provide feedback to improve the device design. DC breakdown is measured at the different temperatures to confirm the avalanche breakdown. Diode's avalanche robustness is measured on-wafer using a UIS test set-up which was integrated with a wafer chuck and CCD camera. Post failure analysis of the diode is done using SEM and optical microscopy to gain insight into the device failure physics.

More Details

Multiple Inverter Microgrid Experimental Fault Testing

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Flicker, Jack D.

For the resiliency of both small and large distribution systems, the concept of microgrids is arising. The ability for sections of the distribution system to be 'self-sufficient' and operate under their own energy generation is a desirable concept. This would allow for only small sections of the system to be without power after being affected by abnormal events such as a fault or a natural disaster, and allow for a greater number of consumers to go through their lives as normal. Research is needed to determine how different forms of generation will perform in a microgrid, as well as how to properly protect an islanded system. While synchronous generators are well understood and generally accepted amongst utility operators, inverter-based resources (IBRs) are less common. An IBR's fault characteristic varies between manufacturers and is heavily based on the internal control scheme. Additionally, with the internal protections of these devices to not damage the switching components, IBRs are usually limited to only 1.1-2.5p.u. of the rated current, depending on the technology. This results in traditional protection methods such as overcurrent devices being unable to 'trip' in a microgrid with high IBR penetration. Moreover, grid-following inverters (commonly used for photovoltaic systems) require a voltage source to synchronize with before operating. Also, these inverters do not provide any inertia to a system. On the other hand, grid-forming inverters can operate as a primary voltage source, and provide an 'emulated inertia' to the system. This study will look at a small islanded system with a grid-forming inverter, and a grid-following inverter subjected to a line-to-ground fault.

More Details

Testing Machine Learned Fault Detection and Classification on a DC Microgrid

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Ojetola, Samuel T.; Reno, Matthew J.; Flicker, Jack D.; Bauer, Daniel; Stoltzfuz, David

Interest in the application of DC Microgrids to distribution systems have been spurred by the continued rise of renewable energy resources and the dependence on DC loads. However, in comparison to AC systems, the lack of natural zero crossing in DC Microgrids makes the interruption of fault currents with fuses and circuit breakers more difficult. DC faults can cause severe damage to voltage-source converters within few milliseconds, hence, the need to quickly detect and isolate the fault. In this paper, the potential for five different Machine Learning (ML) classifiers to identify fault type and fault resistance in a DC Microgrid is explored. The ML algorithms are trained using simulated fault data recorded from a 750 VDC Microgrid modeled in PSCAD/EMTDC. The performance of the trained algorithms are tested using real fault data gathered from an operational DC Microgrid located on the Kirtland Air Force Base. Of the five ML algorithms, three could detect the fault and determine the fault type with at least 99% accuracy, and only one could estimate the fault resistance with at least 99% accuracy. By performing a self-learning monitoring and decision making analysis, protection relays equipped with ML algorithms can quickly detect and isolate faults to improve the protection operations on DC Microgrids.

More Details

Inverter Reliability Estimation for Advanced Inverter Functionality

Conference Record of the IEEE Photovoltaic Specialists Conference

Flicker, Jack D.; Johnson, Jay; Reno, Matthew J.; Azzolini, Joseph A.; Hacke, Peter; Thiagarajan, Ramanathan

In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous modes, which will produce new stresses on the grid-interfacing power electronics components, such as DC/AC inverters. In previous work, multiple DER devices were instrumented to evaluate additional component stress under multiple reactive power setpoints. We utilize quasi-static time-series simulations to determine voltage-reactive power mode (volt-var) mission profile of inverters in an active power system. Mission profiles and loss estimates are then combined to estimate the reduction of the useful life of inverters from different reactive power profiles. It was found that the average lifetime reduction was approximately 0.15% for an inverter between standard unity power factor operation and the IEEE 1547 default volt-var curve based on thermal damage due to switching in the power transistors. For an inverter with an expected 20-year lifetime, the 1547 volt-var curve would reduce the expected life of the device by 12 days. This framework for determining an inverter's useful life from experimental and modeling data can be applied to any failure mechanism and advanced inverter operation.

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory W.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee J.; Gill, Lee; Goodrick, Kyle; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert; Binder, Andrew; Yates, Luke; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley; Abate, Vincent M.; Foulk, James W.; Pickrell, Gregory W.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee J.; Gill, Lee; Goodrick, Kyle; Monson, Todd; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan; Cooper, James

Abstract not provided.

Vertical GaN Devices for Medium-Voltage Power Electronics

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Vertical GaN PN Diodes for Grid Resiliency and Medium-Voltage Power Electronics

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory W.; Dickerson, Jeramy; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth; Baca, Albert; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed; Binder, Andrew; Yates, Luke; Slobodyan, Oleksiy; Sharps, Paul; Simmons, Jerry; Tsao, Jeffrey Y.; Hollis, Mark; Johnson, Noble; Jones, Ken; Pavlidis, Dimitris; Goretta, Ken; Nemanich, Bob; Goodnick, Steve; Chowdhury, Srabanti

Abstract not provided.

Modeling a Grid-Forming Inverter Dynamics under Ground Fault Scenarios Using Experimental Data from Commercially Available Equipment

Conference Record of the IEEE Photovoltaic Specialists Conference

Hernandez-Alvidrez, Javier; Gurule, Nicholas S.; Darbali-Zamora, Rachid; Reno, Matthew J.; Flicker, Jack D.

In order to address the recent inclement weather-related energy events, electricity production is experiencing an important transition from conventional fossil fuel based resources to the use of Distributed Energy Resources (DER), providing clean and renewable energy. These DERs make use of power electronic based devices that perform the energy conversion process required to interface with the utility grids. For the particular cases where DC/AC conversion is required, grid-forming inverters (GFMI) are gaining popularity over their grid-following (GFLI) counterpart. This is due to the fact that GFMI do not require a dedicated Phase Locked Loop (PLL) to synchronize with the grid. The absence of a PLL allows GFMI to operate in stand-alone (off-grid) mode when needed. Nowadays, inverter manufacturers are already offering several products with grid-forming capabilities. However, modeling the dynamics of commercially available GFMI under heavy loads or faults scenarios has become a critical task not only for stability studies, but also for coordination and protection schemes in power grids (or microgrids) that are experiencing a steady growth in their levels of DERs. Based upon experimental low-impedance fault results performed on a commercially available GFMI, this paper presents a modeling effort to replicate the dynamics of such inverters under these abnormal scenarios. The proposed modeling approach relies on modifying previously developed GFMI models, by adding the proper dynamics, to match the current and voltage transient behavior under low-impedance fault scenarios. For the first inverter tested, a modified CERTS GFMI model provides matching transient dynamics under faults scenarios with respect to the experimental results from the commercially available inverter.

More Details

Autonomous Control Strategies for Interconnected DC Microgrid Applications with Multiple der Resource Penetration

Conference Record of the IEEE Photovoltaic Specialists Conference

Gonzalez-Candelario, Carlos O.; Darbali-Zamora, Rachid; Flicker, Jack D.; Rashkin, Lee J.; Neely, Jason C.; Aponte-Bezares, Erick

DC microgrids envisioned with high bandwidth communications may well expand their application range by considering autonomous strategies as resiliency contingencies. In most cases, these strategies are based on the droop control method, seeking low voltage regulation and proportional load sharing. Control challenges arise when coordinating the output of multiple DC microgrids composed of several Distributed Energy Resources. This paper proposes an autonomous control strategy for transactional converters when multiple DC microgrids are connected through a common bus. The control seeks to match the external bus voltage with the internal bus voltage balancing power. Three case scenarios are considered: standalone operation of each DC microgrid, excess generation, and generation deficit in one DC microgrid. Results using Sandia National Laboratories Secure Scalable Microgrid Simulink library, and models developed in MATLAB are compared.

More Details
Results 26–50 of 193
Results 26–50 of 193