Silicon nanostructures with antimony donors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
NanoLetters?
Abstract not provided.
Abstract not provided.
Optics InfoBase Conference Papers
Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared. © 2010 Optical Society of America.
Optics InfoBase Conference Papers
A tandem interferometer system measuring the absolute phase and amplitude of planar split-ring resonators fabricated on a BaF2 substrate with a designed resonance at 10.5 μm is presented. © 2010 Optical Society of America.
Optics Express
Abstract not provided.
Applied Physics Letters
Abstract not provided.
We report low-temperature transport measurements of a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). In contrast to previously reported measurements of DQD's in Si MOS structures, our device has a lateral gate geometry very similar to that used by Petta et al. to demonstrate coherent manipulation of single electron spins. This gate design provides a high degree of tunability, allowing for independent control over individual dot occupation and tunnel barriers, as well as the ability to use nearby constrictions to sense dot charge occupation. Comparison of experimentally extracted capacitances between the dot and nearby gates with electrostatic modeling demonstrates the presence of disorder and the ability to partially compensate for this disorder by adjustment of gate voltages. We experimentally show gate-controlled tuning of the interdot coupling over a wide range of energies, an important step towards potential quantum computing applications.
We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.
Abstract not provided.
We present a new fabrication technique called Membrane Projection Lithography for the production of three-dimensional metamaterials at infrared wavelengths. Using this technique, multilayer infrared metamaterials that include both in-plane and out-of-plane resonators can be fabricated.