Publications

Results 26–50 of 76

Search results

Jump to search filters

Low-Voltage, CMOS-Free Synaptic Memory Based on LiXTiO2 Redox Transistors

ACS Applied Materials and Interfaces

Li, Yiyang; Fuller, Elliot J.; Asapu, Shiva; Kurita, Tomochika; Agarwal, Sapan A.; Yang, J.J.; Talin, A.A.

Neuromorphic computers based on analogue neural networks aim to substantially lower computing power by reducing the need to shuttle data between memory and logic units. Artificial synapses containing nonvolatile analogue conductance states enable direct computation using memory elements; however, most nonvolatile analogue memories require high write voltages and large current densities and are accompanied by nonlinear and unpredictable weight updates. Here, we develop an inorganic redox transistor based on electrochemical lithium-ion insertion into LiXTiO2 that displays linear weight updates at both low current densities and low write voltages. The write voltage, as low as 200 mV at room temperature, is achieved by minimizing the open-circuit voltage and using a low-voltage diffusive memristor selector. We further show that the LiXTiO2 redox transistor can achieve an extremely sharp transistor subthreshold slope of just 40 mV/decade when operating in an electrochemically driven phase transformation regime.

More Details

Redox transistors for neuromorphic computing

IBM Journal of Research and Development

Talin, A.A.; Fuller, Elliot J.; Bennett, Christopher H.; Marinella, Matthew J.; Li, Yiyang

Efficiency bottlenecks inherent to conventional computing in executing neural algorithms have spurred the development of novel devices capable of “in-memory” computing. Commonly known as “memristors,” a variety of device concepts including conducting bridge, vacancy filament, phase change, and other types have been proposed as promising elements in artificial neural networks for executing inference and learning algorithms. In this article, we review the recent advances in memristor technology for neuromorphic computing and discuss strategies for addressing the most significant performance challenges, including nonlinearity, high read/write currents, and endurance. As an alternative to two-terminal memristors, we introduce the three-terminal electrochemical memory based on the redox transistor (RT), which uses a gate to tune the redox state of the channel. Decoupling the “read” and “write” operations using a third terminal and storage of information as a charge-compensated redox reaction in the bulk of the transistor enables high-density information storage. These properties enable low-energy operation without compromising analog performance and nonvolatility. Finally, we discuss the RT operating mechanisms using organic and inorganic materials, approaches for array integration, and prospects for achieving the device density and switching speeds necessary to make electrochemical memory competitive with established digital technology.

More Details

Designing and modeling analog neural network training accelerators

2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Bennett, Christopher H.; Hsia, Alexander W.; Van Heukelom, Michael V.; Hughart, David R.; Fuller, Elliot J.; Li, Yiyang; Talin, A.A.; Marinella, Matthew J.

Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.

More Details

Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Science

Fuller, Elliot J.; Keene, Scott T.; Melianas, Armantas; Wang, Zhongrui; Asapu, Shiva; Agarwal, Sapan A.; Li, Yiyang; Tuchman, Yaakov; James, Conrad D.; Marinella, Matthew J.; Yang, J.J.; Salleo, Alberto; Talin, A.A.

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.

More Details

All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing

Advanced Functional Materials

Talin, A.A.; Fuller, Elliot J.; Agarwal, Sapan A.

Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. In this work, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.

More Details
Results 26–50 of 76
Results 26–50 of 76