Proton-Tunable Analog Transistor Using a Coordination Polymer
Abstract not provided.
Abstract not provided.
The ability to train deep neural networks on large data sets have made significant impacts onto artificial intelligence, but consume significant amounts of energy due to the need to move information from memory to logic units. In-memory "neuromorphic" computing presents an alternative framework that processes information directly on memory elements. In-memory computing has been limited by the poor performance of the analogue information storage element, often phase-change memory or memristors. To solve this problem, we developed two types of "redox transistors" using TiO2 (anatase) which stores analogue information states through the electrochemical concentration of dopants in the crystal. The first type of redox transistor uses lithium as the electrochemical dopant ion, and its key advantage is low operating voltage. The second uses oxygen vacancies as the dopant, which is CMOS compatible and can retain state even when scaled to nanosized dimensions. Both devices offer significant advantages in terms of predictable analogue switching over conventional filamentary-based devices, and provide a significant advance in developing materials and devices for neuromorphic computing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Neuromorphic computers based on analogue neural networks aim to substantially lower computing power by reducing the need to shuttle data between memory and logic units. Artificial synapses containing nonvolatile analogue conductance states enable direct computation using memory elements; however, most nonvolatile analogue memories require high write voltages and large current densities and are accompanied by nonlinear and unpredictable weight updates. Here, we develop an inorganic redox transistor based on electrochemical lithium-ion insertion into LiXTiO2 that displays linear weight updates at both low current densities and low write voltages. The write voltage, as low as 200 mV at room temperature, is achieved by minimizing the open-circuit voltage and using a low-voltage diffusive memristor selector. We further show that the LiXTiO2 redox transistor can achieve an extremely sharp transistor subthreshold slope of just 40 mV/decade when operating in an electrochemically driven phase transformation regime.
IBM Journal of Research and Development
Efficiency bottlenecks inherent to conventional computing in executing neural algorithms have spurred the development of novel devices capable of “in-memory” computing. Commonly known as “memristors,” a variety of device concepts including conducting bridge, vacancy filament, phase change, and other types have been proposed as promising elements in artificial neural networks for executing inference and learning algorithms. In this article, we review the recent advances in memristor technology for neuromorphic computing and discuss strategies for addressing the most significant performance challenges, including nonlinearity, high read/write currents, and endurance. As an alternative to two-terminal memristors, we introduce the three-terminal electrochemical memory based on the redox transistor (RT), which uses a gate to tune the redox state of the channel. Decoupling the “read” and “write” operations using a third terminal and storage of information as a charge-compensated redox reaction in the bulk of the transistor enables high-density information storage. These properties enable low-energy operation without compromising analog performance and nonvolatility. Finally, we discuss the RT operating mechanisms using organic and inorganic materials, approaches for array integration, and prospects for achieving the device density and switching speeds necessary to make electrochemical memory competitive with established digital technology.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019
Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.
Abstract not provided.
Abstract not provided.