Publications

Results 26–50 of 136

Search results

Jump to search filters

Optimization-based, property-preserving finite element methods for scalar advection equations and their connection to Algebraic Flux Correction

Computer Methods in Applied Mechanics and Engineering

Bochev, Pavel B.; Ridzal, Denis R.; D'Elia, Marta D.; Perego, Mauro P.; Peterson, Kara J.

In this paper, we continue our efforts to exploit optimization and control ideas as a common foundation for the development of property-preserving numerical methods. Here we focus on a class of scalar advection equations whose solutions have fixed mass in a given Eulerian region and constant bounds in any Lagrangian volume. Our approach separates discretization of the equations from the preservation of their solution properties by treating the latter as optimization constraints. This relieves the discretization process from having to comply with additional restrictions and makes stability and accuracy the sole considerations in its design. A property-preserving solution is then sought as a state that minimizes the distance to an optimally accurate but not property-preserving target solution computed by the scheme, subject to constraints enforcing discrete proxies of the desired properties. Furthermore, we consider two such formulations in which the optimization variables are given by the nodal solution values and suitably defined nodal fluxes, respectively. A key result of the paper reveals that a standard Algebraic Flux Correction (AFC) scheme is a modified version of the second formulation obtained by shrinking its feasible set to a hypercube. In conclusion, we present numerical studies illustrating the optimization-based formulations and comparing them with AFC

More Details

Optimization-based property-preserving solution recovery for fault-tolerant scalar transport

Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018

Ridzal, Denis R.; Bochev, Pavel B.

As the mean time between failures on the future high-performance computing platforms is expected to decrease to just a few minutes, the development of “smart”, property-preserving checkpointing schemes becomes imperative to avoid dramatic decreases in application utilization. In this paper we formulate a generic optimization-based approach for fault-tolerant computations, which separates property preservation from the compression and recovery stages of the checkpointing processes. We then specialize the approach to obtain a fault recovery procedure for a model scalar transport equation, which preserves local solution bounds and total mass. Numerical examples showing solution recovery from a corrupted application state for three different failure modes illustrate the potential of the approach.

More Details

KKT preconditioners for pde-constrained optimization with the helmholtz equation

SIAM Journal on Scientific Computing

Kouri, Drew P.; Ridzal, Denis R.; Tuminaro, Raymond S.

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.

More Details

LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices

Cyr, Eric C.; von Winckel, Gregory J.; Kouri, Drew P.; Gardiner, Thomas A.; Ridzal, Denis R.; Shadid, John N.; Miller, Sean M.

This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

More Details
Results 26–50 of 136
Results 26–50 of 136