We present a new optimization-based property-preserving algorithm for passive tracer transport. The algorithm utilizes a semi-Lagrangian approach based on incremental remapping of the mass and the total tracer. However, unlike traditional semi-Lagrangian schemes, which remap the density and the tracer mixing ratio through monotone reconstruction or flux correction, we utilize an optimization-based remapping that enforces conservation and local bounds as optimization constraints. In so doing we separate accuracy considerations from preservation of physical properties to obtain a conservative, second-order accurate transport scheme that also has a notion of optimality. Moreover, we prove that the optimization-based algorithm preserves linear relationships between tracer mixing ratios. We illustrate the properties of the new algorithm using a series of standard tracer transport test problems in a plane and on a sphere.
We present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.
When modeling complex physical systems with advanced dynamics, such as shocks and singularities, many classic methods for solving partial differential equations can return inaccurate or unusable results. One way to resolve these complex dynamics is through r-adaptive refinement methods, in which a fixed number of mesh points are shifted to areas of high interest. The mesh refinement map can be found through the solution of the Monge-Ampére equation, a highly nonlinear partial differential equation. Due to its nonlinearity, the numerical solution of the Monge-Ampére equation is nontrivial and has previously required computationally expensive methods. In this report, we detail our novel optimization-based, multigrid-enabled solver for a low-order finite element approximation of the Monge-Ampére equation. This fast and scalable solver makes r-adaptive meshing more readily available for problems related to large-scale optimal design. Beyond mesh adaptivity, our report discusses additional applications where our fast solver for the Monge-Ampére equation could be easily applied.
A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches to computing shape derivatives. Each has a major drawback: the boundary method is less accurate, while the volume method is more invasive to the FEM code. We introduce the strip method, which computes shape derivatives on a strip adjacent to the boundary. The strip method makes code coupling simple. Like the boundary method, it queries the state and adjoint solutions at quadrature nodes, but requires no knowledge of the FEM code implementations. At the same time, it exhibits the higher accuracy of the volume method. As an added benefit, its computational complexity is comparable to that of the boundary method, that is, it is faster than the volume method. We illustrate the benefits of the strip method with numerical examples.
Among the main challenges in shape optimization is the coupling of Finite Element Method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multi-physics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. There are two mathematically equivalent approaches to computing the shape derivative: the volume method, and the boundary method. Each has a major drawback: the boundary method is less accurate, while the volume method is more invasive to the FEM code. Prior implementations of shape derivatives at Sandia have been based on the volume method. We introduce the strip method, which computes shape derivatives on a strip adjacent to the boundary. The strip method makes code coupling simple. Like the boundary method, it queries the state and adjoint solutions at quadrature nodes, but requires no knowledge of the FEM code implementations. At the same time, it exhibits the higher accuracy of the volume method. The development of the strip method also offers us the opportunity to share some lessons learned about implementing the volume method and boundary method, to show shape optimization results on problems of interest, and to begin addressing the other main challenges at hand: constraints on optimized shapes, and their interplay with optimization algorithms.