Publications

Results 101–150 of 189

Search results

Jump to search filters

Water Security Toolkit User Manual Version 1.2

Klise, Katherine A.; Siirola, John D.; Hart, David B.; Hart, William E.; Phillips, Cynthia A.; Haxton, Terranna; Murray, Regan; Janke, Robert; Taxon, Thomas; Laird, Carl; Seth, Arpan; Hackebeil, Gabriel; Mcgee, Shawn; Mann, Angelica

The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water utilities to create response strategies to reduce the impact of contamination in a water distribution network . WST includes hydraulic and water quality modeling software , optimizati on methodologies , and visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy contaminants, (5) locations in the network to take grab sample s to help identify the source of contamination and (6) valves to close in order to isolate contaminate d areas of the network. This user manual describes the different components of WST , along w ith examples and case studies. License Notice The Water Security Toolkit (WST) v.1.2 Copyright c 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. government. This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety of third-party software packages, which have separate licensing policies: Acro Revised BSD License argparse Python Software Foundation License Boost Boost Software License Coopr Revised BSD License Coverage BSD License Distribute Python Software Foundation License / Zope Public License EPANET Public Domain EPANET-ERD Revised BSD License EPANET-MSX GNU Lesser General Public License (LGPL) v.3 gcovr Revised BSD License GRASP AT&T Commercial License for noncommercial use; includes randomsample and sideconstraints executable files LZMA SDK Public Domain nose GNU Lesser General Public License (LGPL) v.2.1 ordereddict MIT License pip MIT License PLY BSD License PyEPANET Revised BSD License Pyro MIT License PyUtilib Revised BSD License PyYAML MIT License runpy2 Python Software Foundation License setuptools Python Software Foundation License / Zope Public License six MIT License TinyXML zlib License unittest2 BSD License Utilib Revised BSD License virtualenv MIT License Vol Common Public License vpykit Revised BSD License Additionally, some precompiled WST binary distributions might bundle other third-party executables files: Coliny Revised BSD License (part of Acro project) Dakota GNU Lesser General Public License (LGPL) v.2.1 PICO Revised BSD License (part of Acro project) i Revised BSD License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con- tributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM- PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD- ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ii Acknowledgements This work was supported by the U.S. Environmental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The material in this document has been subject to technical and policy review by the U.S. EPA, and approved for publication. The views expressed by individual authors, however, are their own, and do not necessarily reflect those of the U.S. Environmental Protection Agency. Mention of trade names, products, or services does not convey official U.S. EPA approval, endorsement, or recommendation. The Water Security Toolkit is an extension of the Threat Ensemble Vulnerability Assessment-Sensor Place- ment Optimization Tool (TEVA-SPOT), which was also developed with funding from the U.S. Environ- mental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The authors acknowledge the following individuals for their contributions to the devel- opment of TEVA-SPOT: Jonathan Berry (Sandia National Laboratories), Erik Boman (Sandia National Laboratories), Lee Ann Riesen (Sandia National Laboratories), James Uber (University of Cincinnati), and Jean-Paul Watson (Sandia National Laboratories). iii Acronyms ATUS American Time-Use Survey BLAS Basic linear algebra sub-routines CFU Colony-forming unit CVAR Conditional value at risk CWS Contamination warning system EA Evolutionary algorithm EDS Event detection system EPA U.S. Environmental Protection Agency EC Extent of Contamination ERD EPANET results database file GLPK GNU Linear Programming Kit GRASP Greedy randomized adaptive sampling process HEX Hexadecimal HTML HyperText markup language INP EPANET input file LP Linear program MC Mass consumed MILP Mixed integer linear program MIP Mixed integer program MSX Multi-species extension for EPANET NFD Number of failed detections NS Number of sensors NZD Non-zero demand PD Population dosed PE Population exposed PK Population killed TAI Threat assessment input file TCE Tailed-conditioned expectation TD Time to detection TEC Timed extent of contamination TEVA Threat ensemble vulnerability assessment TSB Tryptic soy broth TSG Threat scenario generation file TSI Threat simulation input file VAR Value at risk VC Volume consumed WST Water Security Toolkit YML YAML configuration file format for WST iv Symbols Notation Definition Example { , } set brackets { 1,2,3 } means a set containing the values 1,2, and 3. [?] is an element of s [?] S means that s is an element of the set S . [?] for all s = 1 [?] s [?] S means that the statement s = 1 is true for all s in set S . P summation P n i =1 s i means s 1 + s 2 + * * * + s n . \ set minus S \ T means the set that contains all those elements of S that are not in set T . %7C given %7C is used to define conditional probability. P ( s %7C t ) means the prob- ability of s occurring given that t occurs. %7C ... %7C cardinality Cardinality of a set is the number of elements of the set. If set S = { 2,4,6 } , then %7C S %7C = 3. v

More Details

Statistically significant relational data mining :

Berry, Jonathan W.; Leung, Vitus J.; Phillips, Cynthia A.; Pinar, Ali P.; Robinson, David G.

This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.

More Details

Maximizing the value of sensed information in underwater wireless sensor networks via an autonomous underwater vehicle

Proceedings - IEEE INFOCOM

Basagni, Stefano; Bölöni, Ladislau; Gjanci, Petrika; Petrioli, Chiara; Phillips, Cynthia A.; Turgut, Danila

This paper considers underwater wireless sensor networks (UWSNs) for submarine surveillance and monitoring. Nodes produce data with an associated value, decaying in time. An autonomous underwater vehicle (AUV) is sent to retrieve information from the nodes, through optical communication, and periodically emerges to deliver the collected data to a sink, located on the surface or onshore. Our objective is to determine a collection path for the AUV so that the Value of Information (VoI) of the data delivered to the sink is maximized. To this purpose, we first define an Integer Linear Programming (ILP) model for path planning that considers realistic data communication rates, distances, and surfacing constraints. We then define the first heuristic for path finding that is adaptive to the occurrence of new events, relying only on acoustic communication for exchanging short control messages. Our Greedy and Adaptive AUV Path-finding (GAAP) heuristic drives the AUV to collect packets from nodes to maximize the VoI of the delivered data. We compare the VoI of data obtained by running the optimum solution derived by the ILP model to that obtained from running GAAP over UWSNs with realistic and desirable size. In our experiments GAAP consistently delivers more than 80% of the theoretical maximum VoI determined by the ILP model. © 2014 IEEE.

More Details

Optimization of large-scale heterogeneous system-of-systems models

Gray, Genetha A.; Hart, William E.; Hough, Patricia D.; Parekh, Ojas D.; Phillips, Cynthia A.; Siirola, John D.; Swiler, Laura P.; Watson, Jean-Paul W.

Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

More Details

Minimize impact or maximize benefit: The role of objective function in approximately optimizing sensor placement for municipal water distribution networks

World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress

Hart, William E.; Murray, Regan; Phillips, Cynthia A.

We consider the design of a sensor network to serve as an early warning system against a potential suite of contamination incidents. Given any measure for evaluating the quality of a sensor placement, there are two ways to model the objective. One is to minimize the impact or damage to the network, the other is to maximize the reduction in impact compared to the network without sensors. These objectives are the same when the problem is solved optimally. But when given equally-good approximation algorithms for each of this pair of complementary objectives, either one might be a better choice. The choice generally depends upon the quality of the approximation algorithms, the impact when there are no sensors, and the number of sensors available. We examine when each objective is better than the other by examining multiple real world networks. When assuming perfect sensors, minimizing impact is frequently superior for virulent contaminants. But when there are long response delays, or it is very difficult to reduce impact, maximizing impact reduction may be better. © 2011 ASCE.

More Details

Formulation of chlorine and decontamination booster station optimization problem

World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress

Haxton, T.; Murray, R.; Hart, W.; Klise, K.; Phillips, Cynthia A.

A commonly used indicator of water quality is the amount of residual chlorine in a water distribution system. Chlorine booster stations are often utilized to maintain acceptable levels of residual chlorine throughout the network. In addition, hyper-chlorination has been used to disinfect portions of the distribution system following a pipe break. Consequently, it is natural to use hyper-chlorination via multiple booster stations located throughout a network to mitigate consequences and decontaminate networks after a contamination event. Many researchers have explored different methodologies for optimally locating booster stations in the network for daily operations. In this research, the problem of optimally locating chlorine booster stations to decontaminate following a contamination incident will be described. © 2011 ASCE.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Scheduling error correction operations for a quantum computer

Phillips, Cynthia A.; Carr, Robert D.; Ganti, Anand G.; Landahl, Andrew J.

In a (future) quantum computer a single logical quantum bit (qubit) will be made of multiple physical qubits. These extra physical qubits implement mandatory extensive error checking. The efficiency of error correction will fundamentally influence the performance of a future quantum computer, both in latency/speed and in error threshold (the worst error tolerated for an individual gate). Executing this quantum error correction requires scheduling the individual operations subject to architectural constraints. Since our last talk on this subject, a team of researchers at Sandia National Labortories has designed a logical qubit architecture that considers all relevant architectural issues including layout, the effects of supporting classical electronics, and the types of gates that the underlying physical qubit implementation supports most naturally. This is a two-dimensional system where 2-qubit operations occur locally, so there is no need to calculate more complex qubit/information transportation. Using integer programming, we found a schedule of qubit operations that obeys the hardware constraints, implements the local-check code in the native gate set, and minimizes qubit idle periods. Even with an optimal schedule, however, parallel Monte Carlo simulation shows that there is no finite error probability for the native gates such that the error-correction system would be benecial. However, by adding dynamic decoupling, a series of timed pulses that can reverse some errors, we found that there may be a threshold. Thus finding optimal schedules for increasingly-refined scheduling problems has proven critical for the overall design of the logical qubit system. We describe the evolving scheduling problems and the ideas behind the integer programming-based solution methods. This talk assumes no prior knowledge of quantum computing.

More Details

Integrating event detection system operation characteristics into sensor placement optimization

Hart, David B.; Hart, William E.; Mckenna, Sean A.; Phillips, Cynthia A.

We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.

More Details

LDRD final report : massive multithreading applied to national infrastructure and informatics

Barrett, Brian B.; Hendrickson, Bruce A.; Laviolette, Randall A.; Leung, Vitus J.; Mackey, Greg; Murphy, Richard C.; Phillips, Cynthia A.; Pinar, Ali P.

Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun Niagara and Opteron multi-core chips.

More Details

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details

Moving multiple sinks through wireless sensor networks for lifetime maximization

2008 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2008

Basagni, S.; Carosi, A.; Petrioli, C.; Phillips, Cynthia A.

We propose scalable models and centralized heuristics for the concurrent and coordinated movement of multiple sinks in a wireless sensor network (WSN). The proposed centralized heuristic runs in polynomial time given the solution to the linear program and achieves results that are within 2% of the LP-relaxation-based upper bound. It provides a useful benchmark for evaluating centralized and distributed schemes for controlled sink mobility. © 2008 IEEE.

More Details
Results 101–150 of 189
Results 101–150 of 189