Publications

Results 1–25 of 71

Search results

Jump to search filters

Brine Availability Test in Salt (BATS) FY23 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Downs, Christine D.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Otto, Shawn; Davis, Jon; Eldridge, Daniel; Stansberry, Aidan; Rutqvist, Johnny; Wu, Yuxin; Tounsi, Hafssa; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Otto, Shawn; Davis, Jon; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Wang, Jiannan

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn; Dozier, Brian; Weaver, Doug; Stauffer, Phil; Guiltinan, Eric; Boukhalfa, Hakim; Rahn, Thom; Wu, Yuxin; Rutqvist, Jonny; Hu, Mengsu; Crandall, Dustin

Abstract not provided.

FY20 Update on Brine Availability Test in Salt. Revision 4

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Choens, Robert C.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the 2020 fiscal year (FY20) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-two milestone number M2SF-20SNO10303032. This report is an update of an August 2019 level-three milestone report to present the final as-built description of the test and the first phase of operational data (BATS la, January to March 2020) from the Brine Availability Test in Salt (BATS) field test.

More Details

Salt Heater Test (FY19), Rev. 2

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Lopez, Carlos M.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Crandall, Dustin

This report summarizes the 2019 fiscal year (FY19) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-three milestone report M3SF-19SN010303033. This report is an update of the April 2019 level-two milestone report M2SF-19SNO10303031 to reflect the nearly complete as-built status of the borehole heater test. This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP), a DOE Office of Environmental Management (DOE-EM) site. The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test (SNL, 2018). An early design of the field test is laid out in Kuhlman et al. (2017), including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al. (2015) places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, eventually culminating in a drift-scale disposal demonstration. This level-3 milestone report is an update of a level-2 milestone report from April 2019 by the same name. The update adds as-built details of the heater test, which at the time of writing (August 2019) is near complete implementation.

More Details

Salt Heater Test (FY19)

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Heath, Jason; Xiong, Yongliang X.; Paul, Matthew J.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Ajo-Franklin, Jonathan; Hu, Mengsu

This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP). The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test. An early design of the field test is laid out in Kuhlman et al., including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al., places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, possibly culminating in a drift-scale disposal demonstration.

More Details

Experimental Studies of Anisotropy on Borehole Breakouts in Mancos Shale

Journal of Geophysical Research: Solid Earth

Choens, Robert C.; Lee, Moo Y.; Ingraham, Mathew D.; Dewers, Thomas D.; Herrick, Courtney G.

Measuring the size and orientation of borehole breakouts is one of the primary methods for determining the orientation and magnitudes of the in situ stresses in the subsurface. To better understand the effects of anisotropy on borehole breakouts, experiments were conducted on Mancos Shale, a finely laminated mudrock. A novel testing configuration was developed to conduct borehole breakout experiments in a standard triaxial vessel and load frame. Samples were prepared at three different orientations and deformed under 6.9 to 20.7 MPa confining pressure. The results show a variation of peak strength and breakout geometry depending on the lamination orientation. Samples deformed parallel to laminations failed at a higher maximum compressive stress than samples deformed perpendicular to laminations, which were stronger than inclined samples. These relationships are quantified by a cosine-based failure envelope. Observed breakout shapes in perpendicular samples are V-shaped and symmetric around the borehole, which advance as a series of fractures of increasing size into the sidewalls. In inclined samples, fractures form along weaker laminations planes and grow in an en echelon pattern towards the axial stress direction. In parallel samples, long fractures grow from the wellbore towards the axial stress direction. The observed geometries highlight potential sources of error in calculating in situ stresses from borehole breakouts.

More Details

High Fidelity Hybrid Method for In Situ Borehole Stress Determination Final Report

Ingraham, Mathew D.; Choens, Robert C.; Dewers, Thomas D.; Sobolik, Steven R.; Wilson, Jennifer E.; Herrick, Courtney G.; Lee, Moo Y.

The state of stress in the earth is complicated and it is difficult to determine all three components and directions of the stress. However, the state of stress affects all activities which take place in the earth, from causing earthquakes on critically stressed faults, to affecting production from hydraulically fractured shale reservoirs, to determining closure rates around a subterranean nuclear waste repository. Current state of the art methods commonly have errors in magnitude and direction of up to 40%. This is especially true for the intermediate principal stress. This project seeks to better understand the means which are used to determine the state of stress in the earth and improve upon current methods to decrease the uncertainty in the measurement. This is achieved by a multipronged experimental investigation which is closely coupled with advanced constitutive and numeric modeling.

More Details

Project Plan: Salt in Situ Heater Test

Kuhlman, Kristopher L.; Mills, Melissa M.; Herrick, Courtney G.; Matteo, Edward N.; Stuaffer, Phil; Johnson, Peter; Boukhalfa, Hakim; Weaver, Doug; Rutqvist, Jonny; Wu, Yuxin

This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years. The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.

More Details
Results 1–25 of 71
Results 1–25 of 71