Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.
Neural networks (NNs) are known as universal function approximators and can interpolate nonlinear functions between observed data points. However, when the target domain for deployment shifts from the training domain and NNs must extrapolate, the results are notoriously poor. Prior work Martinez et al. (2019) has shown that NN uncertainty estimates can be used to correct binary predictions in shifted domains without retraining the model. We hypothesize that this approach can be extended to correct real-valued time series predictions. As an exemplar, we consider two mechanical systems with nonlinear dynamics. The first system consists of a spring-mass system where the stiffness changes abruptly, and the second is a real experimental system with a frictional joint that is an open challenge for structural dynamicists to model efficiently. Our experiments will test whether 1) NN uncertainty estimates can identify when the input domain has shifted from the training domain and 2) whether the information used to calculate uncertainty estimates can be used to correct the NN’s time series predictions. While the method as proposed did not significantly improve predictions, our results did show potential for modifications that could improve models’ predictions and play a role in structural health monitoring systems that directly impact public safety.
Neural networks (NNs) are known as universal function approximators and can interpolate nonlinear functions between observed data points. However, when the target domain for deployment shifts from the training domain and NNs must extrapolate, the results are notoriously poor. Prior work Martinez et al. (2019) has shown that NN uncertainty estimates can be used to correct binary predictions in shifted domains without retraining the model. We hypothesize that this approach can be extended to correct real-valued time series predictions. As an exemplar, we consider two mechanical systems with nonlinear dynamics. The first system consists of a spring-mass system where the stiffness changes abruptly, and the second is a real experimental system with a frictional joint that is an open challenge for structural dynamicists to model efficiently. Our experiments will test whether 1) NN uncertainty estimates can identify when the input domain has shifted from the training domain and 2) whether the information used to calculate uncertainty estimates can be used to correct the NN’s time series predictions. While the method as proposed did not significantly improve predictions, our results did show potential for modifications that could improve models’ predictions and play a role in structural health monitoring systems that directly impact public safety.
One challenge of using compartmental SEIR models for public health planning is the difficulty in manually tuning parameters to capture behavior reflected in the real-world data. This team conducted initial, exploratory analysis of a novel technique to use physics-informed machine learning tools to rapidly develop data-driven models for physical systems. This machine learning approach may be used to perform data assimilation of compartment models which account for unknown interactions between geospatial domains (i.e. diffusion processes coupling across neighborhoods/counties/states/etc.). Results presented here are early, proof-of-concept ideas that demonstrate initial success in using a physically informed neural network (PINN) model to assimilate data in a compartmental epidemiology model. The results demonstrate initial success and warrant further research and development.