Publications

Results 26–50 of 60

Search results

Jump to search filters

A New Method to Contain Molten Corium in Catastrophic Nuclear Reactor Accidents

Laros, James H.; Wang, Yifeng; Rao, Rekha R.; Kucala, Alec K.; Ross, Kyle R.; Kruichak, Jessica N.; Chavez, William R.

The catastrophic nuclear reactor accident at Fukushima damaged public confidence in nuclear energy and a demand for new engineered safety features that could mitigate or prevent radiation releases to the environment in the future. We have developed a novel use of sacrificial material (SM) to prevent the molten corium from breaching containment during accidents as well as a validated, novel, high-fidelity modeling capability to design and optimize the proposed concept. Some new reactor designs employ a core catcher and a SM, such as ceramic or concrete, to slow the molten corium and avoid the breach of the containment. However, existing reactors cannot easily be modified to include these SMs but could be modified to allow injectable cooling materials (current designs are limited to water). The SM proposed in this Laboratory Development Research and Development (LDRD) project is based on granular carbonate minerals that can be used in existing light water reactor plants. This new SM will induce an endothermic reaction to quickly freeze the corium in place, with minimal hydrogen explosion and maximum radionuclide retention. Because corium spreading is a complex process strongly influenced by coupled chemical reactions (with underlying containment material and especially with the proposed SM), decay heat and phase change. No existing tool is available for modeling such a complex process. This LDRD project focused on two research areas: experiments to demonstrate the feasibility of the novel SM concept, and modeling activities to determine the potential applications of the concept to actual nuclear plants. We have demonstrated small-scale to large-scaled experiments using lead oxide (Pb0) as surrogate for molten corium, which showed that the reaction of the SM with molten Pb0 results in a fast solidification of the melt and the formation of open pore structures in the solidified Pb0 because of CO2 released from the carbonate decomposition.

More Details

A computational model for molten corium spreading and solidification

Computers and Fluids

Kucala, Alec K.; Rao, Rekha R.; Erickson, Lindsay C.; Noble, David R.

When the core is breached during a severe nuclear accident, a molten mixture of nuclear fuel, cladding, and structural supports is discharged from the reactor vessel. This molten mixture of ceramic and metal is often referred to as “corium”. Predicting the flow and solidification of corium poses challenges for numerical models due to the presence of large Peclet numbers when convective transport dominates the physics. Here, we utilize a control volume finite-element method (CVEM) discretization to stabilize the advection dominated flow and heat transport. This CVFEM approach is coupled with the conformal decomposition finite-element method (CDFEM), which tracks the corium/air interface on an existing background mesh. CDFEM is a sharp-interface method, allowing the direct discretization of the corium front. This CVFEM-CDFEM approach is used to model the spreading of molten corium in both two- and three-dimensions. The CVFEM approach is briefly motivated in a comparison with a streamwise upwind/Petrov-Galerkin (SUPG) stabilized finite-element method, which was not able to suppress spurious temperature oscillations in the simulations. Our model is compared directly with the FARO L26 corium spreading experiments and with previous numerical simulations, showing both quantitative and qualitative agreement with those studies.

More Details

Digital Rock Physics and 3D Printing for Fractured Porous Media

Martinez, Mario J.; Yoon, Hongkyu Y.; Kucala, Alec K.; Dewers, Thomas D.; Mendoza, Hector M.

Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. Here we report on our research exploring the possibilities that these technologies can bring to geosciences for coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens.

More Details

The influence of interfacial slip on two-phase flow in rough pores

Water Resources Research

Kucala, Alec K.; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

More Details

The influence of interfacial slip on two-phase flow in rough pores

Water Resources Research

Kucala, Alec K.; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

More Details

A conformal decomposition finite element method for dynamic wetting applications

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

Noble, David R.; Kucala, Alec K.; Martinez, Mario J.

An enriched finite element method is described for capillary hydrodynamics including dynamic wetting. The method is enriched via the Conformal Decomposition Finite Element Method (CDFEM). Two formulations are described, one with first-order accuracy and one with second-order accuracy in time. Both formulations utilize a semi-implicit form for the surface tension that is shown to effectively circumvent the explicit capillary time step limit. Sharp interface boundary conditions are developed for capturing the dynamic contact angle as the fluid interface moves along the wall. By virtue of the CDFEM, the contact line is free to move without risk of mesh tangling, but is sharply captured. Multiple problems are used to demonstrate the effectiveness of the methods.

More Details
Results 26–50 of 60
Results 26–50 of 60