Publications

17 Results

Search results

Jump to search filters

Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer Flow using SPARC: Initial Evaluation

Wagnild, Ross M.; Bitter, Neal B.; Fike, Jeffrey A.; Howard, Micah A.

This report documents the initial testing of the Sandia Parallel Aerodynamics and Reentry Code (SPARC) to directly simulate hypersonic, turbulent boundary layer flow over a sharp 7- degree half-angle cone. This type of computation involves a tremendously large range of scales both in time and space, requiring a large number of grid cells and the efficient utilization of a large pool of resources. The goal of the simulation is to mimic and verify a wind tunnel experiment that seeks to measure the turbulent surface pressure fluctuations. These data are necessary for building a model to predict random vibration loading in the reentry flight environment. A low-dissipation flux scheme in SPARC is used on a 2.7 billion cell mesh to capture the turbulent fluctuations in the boundary layer flow. The grid is divided into 115200 partitions and simulated using the Knight's Landings (KNL) partition of the Trinity system. The parallel performance of SPARC is explored on the Trinity system, as well as some of the other new architectures. Extracting data from the simulation shows good agreement with the experiment as well as a colleague's simulation. The data provide a guide for which a new model can be built for better prediction of the reentry random vibration loads.

More Details

Gas-kinetic simulation of sustained turbulence in minimal Couette flow

Physical Review Fluids

Gallis, Michail A.; Torczynski, J.R.; Bitter, Neal B.; Koehler, Timothy P.; Plimpton, Steven J.; Papadakis, George

Here, we provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re = 500 . The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. Finally, these results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures.

More Details

Molecular-Level Simulations of Turbulence and Its Decay

Physical Review Letters

Gallis, Michail A.; Bitter, Neal B.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.; Papadakis, G.

We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.

More Details
17 Results
17 Results