Publications

Results 1–25 of 31

Search results

Jump to search filters

Modeling Shock-Driven Reaction in Low-Density Non-energetic polymeric materials

Brundage, Aaron B.; Alexander, Charles S.; Reinhart, William D.

Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data for PMDI foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. This methodology was also used to predict the anomalous compaction of PMDI foams over published data sets from 0.087 to 0.87 g/cc, and solid Polyurethane at a theoretical maximum density (TMD) of 1.264 g/cc. Likewise, similar modeling techniques were used to predict the performance of SX-358 foam, an RTV-based stress cushion material at a nominal density of 0.41 g/cc, and the matrix material, with properties similar to Sylgard, at 1.1 g/cc. At the start of this study, data were only available at a single impact condition below the threshold for reaction; hence, the decomposition of this material at higher pressures was revealed as a significant finding of this work. The decomposition of SX-358 at higher impact pressures to product species including solid, liquid, and gaseous molecules was estimated with thermochemical equilibrium calculations using TIGER. with thermochemical equilibrium calculations using TIGER. This modeling approach, developed for PMDI foam, was shown to predict gas gun data, acquired as part of this study, up to pressures of 14 GPa. Furthermore, additional phase transitions were predicted in the product species under shock compression. To date, this study is the first known to the authors that demonstrates and successfully predicts the decomposition of these low-density polymer-based foams using a single model applicable to a broad range of impact loading conditions.

More Details

Virtual simulation of the effects of intracranial fluid cavitation in blast-induced traumatic brain injury

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Haniff, Shivonne H.; Taylor, Paul A.; Brundage, Aaron B.; Burnett, Damon J.; Cooper, Candice F.; Gullerud, Arne S.; Terpsma, Ryan J.

A microscale model of the brain was developed in order to understand the details of intracranial fluid cavitation and the damage mechanisms associated with cavitation bubble collapse due to blast-induced traumatic brain injury (TBI). Our macroscale model predicted cavitation in regions of high concentration of cerebrospinal fluid (CSF) and blood. The results from this macroscale simulation directed the development of the microscale model of the superior sagittal sinus (SSS) region. The microscale model includes layers of scalp, skull, dura, superior sagittal sinus, falx, arachnoid, subarachnoid spacing, pia, and gray matter. We conducted numerical simulations to understand the effects of a blast load applied to the scalp with the pressure wave propagating through the layers and eventually causing the cavitation bubbles to collapse. Collapse of these bubbles creates spikes in pressure and von Mises stress downstream from the bubble locations. We investigate the influence of cavitation bubble size, compressive wave amplitude, and internal bubble pressure. The results indicate that these factors may contribute to a greater downstream pressure and von Mises stress which could lead to significant tissue damage.

More Details

Prediction of spatial distributions of equilibrium product species from high explosive blasts in air

50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014

Brundage, Aaron B.; Attaway, Stephen W.; Hobbs, Michael L.; Kaneshige, Michael J.; Boye, Lydia A.

Blast waves from an explosion in air can cause significant structural damage. As an example, cylindrically-shaped charges have been used for over a century as dynamite sticks for mining, excavation, and demolition. Near the charge, the effects of geometry, standoff from the ground, the proximity to other objects, confinement (tamping), and location of the detonator can significantly affect blast wave characteristics. Furthermore, nonuniformity in the surface characteristics and the density of the charge can affect fireball and shockwave structure. Currently, the best method for predicting the shock structure near a charge and the dynamic loading on nearby structures is to use a multidimensional, multimaterial shock physics code. However, no single numerical technique currently exists for predicting secondary combustion, especially when particulates from the charge are propelled through the fireball and ahead of the leading shock lens. Furthermore, the air within the thin shocked layer can dissociate and ionize. Hence, an appropriate equation of state for air is needed in these extreme environments. As a step towards predicting this complex phenomenon, a technique was developed to provide the equilibrium species composition at every computational cell in an air blast simulation as an initial condition for hand-off to other analysis codes for combustion fluid dynamics or radiation transport. Here, a bare cylindrical charge of TNT detonated in air is simulated using CTH, an Eulerian, finite volume, shock propagation code developed and maintained at Sandia National Laboratories. The shock front propagation is computed at early times, including the detonation wave structure in the explosive and the subsequent air shock up to 100 microseconds, where ambient air entrainment is not significant. At each computational cell, which could have TNT detonation products, air, or both TNT and air, the equilibrium species concentration at the density-energy state is computed using the JCZS2i database in the thermochemical code TIGER. This extensive database of 1267 gas (including 189 ionized species) and 490 condensed species can predict thermodynamic states up to 20,000 K. The results of these calculations provide the detailed three-dimensional structure of a thin shock front, and spatial species concentrations including free radicals and ions. Furthermore, air shock predictions are compared with experimental pressure gage data from a right circular cylinder of pressed TNT, detonated at one end. These complimentary predictions show excellent agreement with the data for the primary wave structure.

More Details

Implementation of tillotson equation of state for hypervelocity impact of metals, geologic materials, and liquids

Procedia Engineering

Brundage, Aaron B.

The Tillotson equation of state (EOS), which was originally developed for the hypervelocity impact of metals, was augmented with an additional region in expansion to provide full coverage of the density-energy space and a new cavitation model for liquids. This EOS was implemented into CTH, Sandia National Laboratories Eulerian, finite-volume, shock physics code, for the general purpose of simulating hypervelocity impacts of metals, geologic materials, and liquids; however, the salient features of this EOS in both compression and expansion are evaluated for water given the ubiquity of available data. Addition of a cavitation model allows for treatment of liquid spall when the local pressure drops below the vapor pressure in events such as underwater blasts and high speed projectiles or fragments in liquids. The EOS is evaluated by comparing the response to previously published dynamic compression experiments. Additionally, the model results are compared against the Mie-Gruneisen and SESAME equations of state already in the CTH database. © 2013 The Authors.

More Details

Modeling compressive reaction and estimating model uncertainty in shock loaded porous samples of hexanitrostilbene (HNS)

AIP Conference Proceedings

Brundage, Aaron B.; Gump, J.C.

Neat pressings of HNS powders have been used in many explosive applications for over 50 years. However, characterization of its crystalline properties has lagged that of other explosives, and the solid stress has been inferred from impact experiments or estimated from mercury porosimetry. This lack of knowledge of the precise crystalline isotherm can contribute to large model uncertainty in the reacted response of pellets to shock impact. At high impact stresses, deflagration-to-detonation transition (DDT) processes initiated by compressive reaction have been interpreted from velocity interferometry at the surface of distended HNS-FP pellets. In particular, the Baer-Nunziato multiphase model in CTH, Sandia's Eulerian, finite volume shock propagation code, was used to predict compressive waves in pellets having approximately a 60% theoretical maximum density (TMD). These calculations were repeated with newly acquired isothermal compression measurements of fineparticle HNS using diamond anvil cells to compress the sample and powder x-ray diffraction to obtain the sample volume at each pressure point. Hence, estimating the model uncertainty provides a simple method for conveying the impact of future model improvements based upon new experimental data. © 2012 American Institute of Physics.

More Details

Unreacted equation of state development and multiphase modeling of dynamic compaction of low density hexanitrostilbene (HNS) pressings

Proceedings - 14th International Detonation Symposium, IDS 2010

Brundage, Aaron B.

Compaction waves in porous energetic materials have been shown to induce reaction under impact loading. In the past, simple two-state burn models such as the Arrhenius Burn model have been developed to predict slapper initiation in Hexanitrostilbene (HNS) pellets; however, a more sophisticated, fundamental approach is needed to predict the shock response during impact loading, especially in pellets that have been shown to have strong density gradients. The intergranular stress measures the resistance to bed compaction or the removal of void space due to particle packing and rearrangement. A constitutive model for the intergranular stress is needed for closure in the Baer-Nunziato (BN) multiphase mixture theory for reactive energetic materials. The intergranular stress was obtained from both quasi-static compaction experiments and from dynamic compaction experiments. Additionally, historical data and more recently acquired data for porous pellets compacted to high densities under shock loading were used for model assessment. Predicted particle velocity profiles under dynamic compaction were generally in good agreement with the experimental data. Hence, a multiphase model of HNS has been developed to extend current predictive capability.

More Details

Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomography

AIP Conference Proceedings

Brundage, Aaron B.; Wixom, Ryan R.; Tappan, Alexander S.; Long, G.T.

Three-dimensional shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports investigations of microscale explosive phenomenology and elucidates mechanisms governing initiation of secondary explosives. © 2009 American Institute of Physics.

More Details

Microenergetic shock initiation studies on deposited films of PETN

AIP Conference Proceedings

Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne T.; Long, Gregory L.; Knepper, Robert; Brundage, Aaron B.; Jones, David A.

Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the out-of-plane and in-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult. Initiation was possible with an explosively-driven 0.13-mm thick Kapton flyer and direct observation of initiation behavior was examined using streak camera photography at different flyer velocities. Models of this configuration were created using the shock physics code CTH. © 2009 American Institute of Physics.

More Details
Results 1–25 of 31
Results 1–25 of 31