Disposal of Advanced Reactor and Accident-Tolerant Spent Nuclear Fuel
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Commercial nuclear power plants typically use nuclear fuel that is enriched to less than five weight percent in the isotope 235U. However, recently several vendors have proposed new nuclear power plant designs that would use fuel with 235U enrichments between five weight percent and 19.75 weight percent. Nuclear fuel with this level of 235U enrichment is known as “high assay low-enriched uranium.” Once it has been irradiated in a nuclear reactor and becomes used (or spent) nuclear fuel, it will be stored, transported, and disposed of. However, irradiated high assay low-enriched uranium differs from typical irradiated nuclear fuel in several ways, and these differences may have economic effects on its storage, transport, and disposal, compared to typical irradiated nuclear fuel. This report describes those differences and qualitatively discusses their potential economic effects on storage, transport, and disposal.
The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.
Nuclear Technology
The U.S. Department of Energy is funding research into studying the consequences of postclosure criticality on the performance of a generic repository by (1) identifying the features, events, and processes (FEPs) that need to be considered in such an analysis, (2) developing the tools needed to model the relevant FEPs in a postclosure performance assessment, and (3) conducting analyses both with and without the occurrence of a postclosure criticality and comparing the results. This paper describes progress in this area of research and presents the results to date of analyzing the consequences of a postulated steady-state criticality in a hypothetical saturated shale repository. Preliminary results indicate that postclosure criticality would not affect repository performance.
This report represents completion of milestone deliverable M2SF-24SN010309082 Annual Status Update for OWL due on November 30, 2023. It contains the status of fiscal year 2023 (FY2023) updates for the Online Waste Library (OWL).
The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.
Abstract not provided.
The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal.
The US Department of Energy (DOE) is investigating the use of different materials that could be used to fill the void space inside a dual-purpose canister (DPC) loaded with spent nuclear fuel (SNF) just before it is emplaced in a deep geologic repository. The purpose of adding filler material is to maintain subcritical conditions in the repository during the postclosure period, which can span up to 1,000,000 years. Several types of materials have been proposed, including metals, cements, particulates, and glass. Part of this investigation addresses how the presence of filler material inside a DPC will affect the performance of the repository with respect to the repository features; the consequences of events that may occur; and the multiple thermal, hydrologic, chemical, and mechanical processes that may occur in a deep geologic repository over long timescales. This report describes some of the filler materials that have been proposed and studied; identifies 11 features, 6 events, and 25 processes that may be affected by the presence of filler materials; and discusses the effects that may require consideration for each feature, event, or process. The results of this study can be used to direct appropriate research and to develop suitable models if the DOE decides to use fillers to maintain subcritical conditions in DPCs used to dispose of SNF.
This FY2023 report is the second update to the Disposal Research (DR) Research and Development (R&D) 5-year plan for the Spent Fuel and Waste Science and Technology (SFWST) Campaign DR R&D activities. In the planning for FY2020 in the U.S. Department of Energy (DOE) NE-81 SFWST Campaign, the DOE requested development of a high-level summary plan for activities in the DR R&D program for the next five (5)-year period, with periodic updates to this summary plan. The DR R&D 5-year plan was provided to the DOE based initially on the FY2020 priorities and program structure (initial 2020 version of this 5-year plan) and provides a strategic summary guide to the work within the DR R&D technical areas (Control Accounts, CA), focusing on the highest priority technical thrusts. This 5-year plan is a living document (planned to be updated periodically) that provides review of SFWST R&D accomplishments (as seen on the 2021 revision of this 5-year plan), describes changes to technical R&D prioritization based on (a) progress in each technical area (including external technical understanding) with specific accomplishments and (b) any changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). Updates to this 5-year plan include the DR R&D adjustments to high-priority knowledge gaps to be investigated in the near-term, as well as the updated longer-term DR R&D directions for the program activities. This plan fulfills the Milestone M2SF23SN010304083 in DR Work Package (WP) SF-23SN01030408 (GDSA - Framework Development – SNL).
This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.
Abstract not provided.
Abstract not provided.
This report represents completion of milestone deliverable M2SF-23SN010309082 Annual Status Update for OWL due on November 30, 2022. It provides the status of fiscal year 2022 (FY2022) updates for the Online Waste Library (OWL).
Abstract not provided.
The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Transportation of sodium-bonded spent fuel appears to present no unique challenges. Storage systems for this fuel should be designed to keep water, both liquid and vapor, from contacting the spent fuel. This fuel is not suitable for geologic disposal; therefore, how the spent sodium bonded fuel will be processed and the characteristics of the final disposal waste form(s) need to be considered. TRISO spent fuel appears to present no unique challenges in terms of transportation, storage, or disposal. If the graphite block is disposed of with the TRISO spent fuel, the 14C and 3H generated would need to be considered in the postclosure performance assessment. Salt waste from the molten salt reactor has yet to be transported or stored and might be a challenge to dispose of in a non-salt repositories. Like sodium-bonded spent fuel, how the salt will be treated and the characteristics of the final disposal waste form(s) need to be considered. In addition, radiolysis in the frozen salt waste form continues to generate gas, which presents a hazard. Both HALEU and high-enriched uranium SNF are currently being stored and transported by the DOE. Disposal of fuels with enrichments greater than 5% was included in the disposal plan for Yucca Mountain. The increased potential for criticality associated with the higher enriched SNF is mitigated by additional criticality control measures. Fuels that are similar to some ATFs were part of the disposal plan for Yucca Mountain. Some of the properties of these fuels (swelling, generation of 14C) would have to be considered as part of a postclosure performance assessment.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
As presented above, because similar existing DOE-managed SNF (DSNF) from previous reactors have been evaluated for disposal pathways, we use this knowledge/experience as a broad reference point for initial technical bases for preliminary dispositioning of potential AR SNF. The strategy for developing fully-formed gap analyses for AR SNF entails the primary step of first obtaining all the defining characteristics of the AR SNF waste stream from the AR developers. Utilizing specific and accurate information/data for developing the potential disposal inventory to be evaluated is a key principle start for success. Once the AR SNF waste streams are defined, the initial assessments would be based on comparison to appropriate existing SNF/waste forms previously analyzed (prior experience) to make a determination on feasibility of direct disposal, or the need to further evaluate due to differences specific to the AR SNF. Assessments of criticality potential and controls would also be performed to assess any R&D gaps to be addressed in that regard as well. Although some AR SNF may need additional treatment for waste form development, these aspects may also be constrained and evaluated within the context of disposal options, including detailed gap analysis to identify further R&D activities to close the gaps.
Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting
Abstract not provided.
Proceedings of the Nuclear Criticality Safety Division Topical Meeting, NCSD 2022 - Embedded with the 2022 ANS Annual Meeting
Many, if not all, Waste Management Organisation programs will include criticality safety. As criticality safety in the long-term, i.e. considered over post-closure timescales in dedicated disposal facilities, is a unique challenge for geological disposal there is limited opportunity for sharing of experience within an individual organization/country. Therefore, sharing of experience and knowledge between WMOs to understand any similarities and differences will be beneficial in understanding where the approaches are similar and where they are not, and the reasons for this. To achieve this benefit a project on Post-Closure Criticality Safety has been established through the Implementing Geological Disposal - Technology Platform with the overall aim to facilitate the sharing of this knowledge. This project currently has 11 participating nations, including the United States and this paper presents the current position in the United States.
This report represents completion of milestone deliverable M2SF-22SN010309082 Annual Status Update for OWL, which is due on November 30, 2021 as part of the fiscal year 2022 (FY2022) work package SF-22SN01030908. This report provides an annual update on status of FY2021 activities for the work package “OWL - Inventory – SNL”. The Online Waste Library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), DOE-managed spent nuclear fuel (DSNF), and other wastes that are likely candidates for deep geologic disposal. Links to the current supporting documents for the data are provided when possible; however, no classified or official-use-only (OUO) data are planned to be included in OWL. There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This report contains new information on sodium-bonded spent fuel waste types and wastes forms, which are included in the next release of OWL, Version 3.0, on the Sandia National Laboratories (SNL) External Collaboration Network (ECN). The report also provides an update on the effort to include information regarding the types of vessels capable of disposing of DOE-managed waste.
Abstract not provided.
A key objective of the United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. A study has been initiated to examine the potential consequences, with respect to long-term repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. The first phase (a scoping phase) consisted of developing an approach to creating the modeling tools and techniques that may eventually be needed to either include or exclude criticality from a performance assessment (PA) as appropriate; this scoping phase is documented in Price et al. (2019a). In the second phase, that modeling approach was implemented and future work was identified, as documented in Price et al. (2019b). This report gives the results of a repository-scale PA examining the potential consequences of postclosure criticality, as well as the information, modeling tools, and techniques needed to incorporate the effects of postclosure criticality in the PA.
Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.
The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report represents completion of milestone deliverable M2SF-21SN010309012 “Annual Status Update for OWL and Waste Form Characteristics” that provides an annual update on status of fiscal year (FY 2020) activities for the work package SF-20SN01030901 and is due on January 29, 2021. The Online Waste Library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), spent nuclear fuel (SNF), and other wastes that are likely candidates for deep geologic disposal, with links to the current supporting documents for the data (when possible; note that no classified or official-use-only (OUO) data are planned to be included in OWL). There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This draft report contains versions of the OWL model architecture for vessel information (Appendix A) and an excerpt from the OWL User’s Guide (Appendix B and SNL 2020), which are for the current OWL Version 2.0 on the Sandia External Collaboration Network (ECN).
The Online Waste Library (OWL) provides one consolidated source of information on Department of Energy-managed wastes likely to require deep geologic disposal. With the release of OWL Version 1.0 in fiscal year (FY) 2019, much of the FY2020 work involved developing the OWL change control process and the OWL release process. These two processes (in draft form) were put into use for OWL Version 2.0, which was released in early FY2021. With the knowledge gained, the OWL team refined and documented the two processes in two separate reports. This report addresses the release process starting with a definition of release management in Section 2. Section 3 describes the Information Technology Infrastructure Library (ITIL) framework, part of which includes the three different environments used for release management. Section 4 presents the OWL components existing in the different environments and provides details on the release schedule and procedures.
The Online Waste Library (OWL) provides a consolidated source of information on Department of Energy-managed radioactive waste likely to require deep geologic disposal. With the release of OWL Version 1.0 in fiscal year 2019 (FY2019), much of the FY2020 work involved developing the OWL change control process and the OWL release process. These two processes (in draft form) were put into use for OWL Version 2.0, which was released in early FY2021. With the knowledge gained, the OWL team refined and documented the two processes in two separate reports. This report focuses on the change control process and discusses the following: (1) definitions and system components; (2) roles and responsibilities; (3) origin of changes; (4) the change control process including the Change List, Task List, activity categories, implementation examples, and checking and review; and (5) the role of the re lease process in ensuring changes in the Change List are incorporated into a public release.
One of the objectives of the United States (U.S.) Department of Energy's (DOE) Office of Nuclear Energy's Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the U.S. has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act 1982). Any repository licensed to dispose the SNF must meet requirements regarding the longterm performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently being used to store and transport SNF but were not designed for permanent geologic disposal. A two-phase study has been initiated to begin examining the potential consequences, with respect to longterm repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. Phase I, a scoping phase, consisted of developing an approach intended to be a starting point for the development of the modeling tools and techniques that may eventually be required either to exclude criticality from or to include criticality in a performance assessment (PA) as appropriate; Phase I is documented in Price et al. (2019). The Phase I approach guided the analyses and simulations done in Phase II to further the development of these modeling tools and techniques as well as the overall knowledge base. The purpose of this report is to document the results of the analyses conducted during Phase II. The remainder of Section 1 presents the background, objective, and scope of this report, as well as the relevant key assumptions used in the Phase II analyses and simulations. Subsequent sections discuss the analyses that were conducted (Section 2), the results of those analyses (Section 3), and the summary and conclusions (Section 4). This report fulfills the Spent Fuel and Waste Science and Technology Campaign deliverable M2SF-20SN010305061.
Abstract not provided.
The On - Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.
Abstract not provided.
The Department of Energy is evaluating the technical feasibility of disposal of spent nuclear fuel in dual-purpose canisters in various geologies. As part of ongoing research and development, the effect of potential post-closure criticality events on repository performance is being studied. Many different features, events, and processes (FEPs) could affect the potential for criticality or the extent of a criticality event. Additionally, a criticality event could affect other FEPs. This report uses existing lists of FEPs as a starting point to evaluate the FEPs that could affect or be affected by an in- package criticality event. The evaluation indicates that most of the FEPs associated with the waste form, the waste, or the EBS have some effect on post-closure criticality and/or are affected by the consequences of post-closure criticality. In addition, FEPs not previously considered are identified for further development.
Abstract not provided.
Commercial spent nuclear fuel (SNF) is accumulating at 72 sites across the U.S., at the rate of about 2,000 metric tons of uranium (MTU) per year. There are currently more than 2,700 dualpurpose canisters (DPCs) loaded with SNF, which are designed for storage and transportation but not disposal. If current storage practices continue, about half the eventual total U.S. SNF inventory will be in about 5,500 dry storage systems by 2035, with the entire inventory stored in 10,000 or more by 2060. The quantity of SNF in DPCs is now much greater than that anticipated in the past, leading the DOE to investigate the technical feasibility of direct disposal of SNF in DPCs. Studies in 2013-2015 concluded that the main technical challenges for disposal of SNF in DPCs are thermal management, handling and emplacement of large, heavy waste packages, and postclosure criticality control (Hardin et al. 2015). Of these, postclosure criticality control is the most challenging, and the R&D needed for this aspect of DPC direct disposal is the primary focus of this report.
Abstract not provided.
Abstract not provided.