Publications

Results 8101–8125 of 99,299

Search results

Jump to search filters

Securing Inverter Communication: Proactive Intrusion Detection and Mitigation System to Tap, Analyze, and Act

Hossain-McKenzie, Shamina S.; Chavez, Adrian R.; Jacobs, Nicholas J.; Jones, Christian B.; Summers, Adam; Wright, Brian J.

The electric grid has undergone rapid, revolutionary changes in recent years; from the addition of advanced smart technologies to the growing penetration of distributed energy resources (DERs) to increased interconnectivity and communications. However, these added communications, access interfaces, and third-party software to enable autonomous control schemes and interconnectivity also expand the attack surface of the grid. To address the gap of DER cybersecurity and secure the grid-edge to motivate a holistic, defense-in-depth approach, a proactive intrusion detection and mitigation system (PIDMS) device was developed to secure PV smart inverter communications. The PIDMS was developed as a distributed, flexible bump-in-the-wire (BITW) solution for protecting PV smart inverter communications. Both cyber (network traffic) and physical (power system measurements) are processed using network intrusion monitoring tools and custom machinelearning algorithms for deep packet analysis and cyber-physical event correlation. The PIDMS not only detects abnormal events but also deploys mitigations to limit or eliminate system impact; the PIDMS communicates with peer PIDMSs at different locations using the MQTT protocol for increased situational awareness and alerting. The details of the PIDMS methodology and prototype development are detailed in this report as well as the evaluation results within a cyber-physical emulation environment and subsequent industry feedback.

More Details

Long wavelength interband cascade lasers

Applied Physics Letters

Massengale, J.A.; Shen, Yixuan; Yang, Rui Q.; Hawkins, Samuel D.; Klem, John F.

InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III-V interband lasers.

More Details

Innovation Flex Time

Ackermann, Mark R.; Osborn, Thor D.

The authors examine the problem of how to provide a time code for staff to use in pursuit of innovation. Four potential options are explored ranging from not providing funds for this activity, to charging such efforts against existing or expanded program management and program development funds. One solution that provides funded time without raising laboratory overhead rates is identified and referred to as Innovation Flex Time. This would consist of capturing hours worked in excess of the standard work week but not charged to customers and making those hours available to fund time for exploring new ideas. A brief examination of labor relations laws, and laws regulating laboratory directed research and development suggests that Innovation Flex Time is a viable option for the laboratory. However, implementation of Innovation Flex Time would require NNSA approval and modification of the existing management and operations contract.

More Details
Results 8101–8125 of 99,299
Results 8101–8125 of 99,299