Publications

Results 5801–5825 of 99,299

Search results

Jump to search filters

Recycling of Lead Pastes from Spent Lead–Acid Batteries: Thermodynamic Constraints for Desulphurization

Recycling

Xiong, Yongliang

Lead–acid batteries are important to modern society because of their wide usage and low cost. The primary source for production of new lead–acid batteries is from recycling spent lead–acid batteries. In spent lead–acid batteries, lead is primarily present as lead pastes. In lead pastes, the dominant component is lead sulfate (PbSO4, mineral name anglesite) and lead oxide sulfate (PbO•PbSO4, mineral name lanarkite), which accounts for more than 60% of lead pastes. In the recycling process for lead–acid batteries, the desulphurization of lead sulfate is the key part to the overall process. In this work, the thermodynamic constraints for desulphurization via the hydrometallurgical route for recycling lead pastes are presented. The thermodynamic constraints are established according to the thermodynamic model that is applicable and important to recycling of lead pastes via hydrometallurgical routes in high ionic strength solutions that are expected to be in industrial processes. The thermodynamic database is based on the Pitzer equations for calculations of activity coefficients of aqueous species. The desulphurization of lead sulfates represented by PbSO4 can be achieved through the following routes. (1) conversion to lead oxalate in oxalate-bearing solutions; (2) conversion to lead monoxide in alkaline solutions; and (3) conversion to lead carbonate in carbonate solutions. Among the above three routes, the conversion to lead oxalate is environmentally friendly and has a strong thermodynamic driving force. Oxalate-bearing solutions such as oxalic acid and potassium oxalate solutions will provide high activities of oxalate that are many orders of magnitude higher than those required for conversion of anglesite or lanarkite to lead oxalate, in accordance with the thermodynamic model established for the oxalate system. An additional advantage of the oxalate conversion route is that no additional reductant is needed to reduce lead dioxide to lead oxide or lead sulfate, as there is a strong thermodynamic force to convert lead dioxide directly to lead oxalate. As lanarkite is an important sulfate-bearing phase in lead pastes, this study evaluates the solubility constant for lanarkite regarding the following reaction, based on the solubility data, PbO•PbSO4 + 2H+ ⇌ 2Pb2+ + SO42− + H2O(l).

More Details

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Local invariants identify topology in metals and gapless systems

Physical Review B

Cerjan, Alexander; Loring, Terry A.

Although topological band theory has been used to discover and classify a wide array of novel topological phases in insulating and semimetal systems, it is not well suited to identifying topological phenomena in metallic or gapless systems. Here, we develop a theory of topological metals based on the system's spectral localizer and associated Clifford pseudospectrum, which can both determine whether a system exhibits boundary-localized states despite the presence of degenerate bulk bands and provide a measure of these states' topological protection even in the absence of a bulk band gap. We demonstrate the generality of this method across symmetry classes in two lattice systems, a Chern metal and a higher-order topological metal, and prove the topology of these systems is robust to relatively strong perturbations. The ability to define invariants for metallic and gapless systems allows for the possibility of finding topological phenomena in a broad range of natural, photonic, and other artificial materials that could not be previously explored.

More Details

The Multi-scenario Extreme Weather Simulator: Energy Resilience for Mission Assurance

Villa, Daniel L.; Schostek, Tyler; Bianchi, Carlo; Macmillan, Madeline; Carvallo, Juan P.

The Multi-scenario extreme weather simulator (MEWS) is a stochastic weather generation tool. The MEWS algorithm uses 50 or more years of National Oceanic and Atmospheric Association (NOAA) daily summaries [1] for maximum and minimum temperature and NOAA climate norms [2] to calculate historical heat wave and cold snap statistics. The algorithm takes these statistics and shifts them according to multiplication factors provided in the Intergovernmental Panel on Climate Change (IPCC) physical basis technical summary [3] for heat waves.

More Details
Results 5801–5825 of 99,299
Results 5801–5825 of 99,299