Publications

Results 84301–84400 of 96,771

Search results

Jump to search filters

Variability in dynamic properties of tantalum : spall, attenuation and load/unload

Reinhart, William D.; Trott, Wayne T.; Chhabildas, Lalit C.; Vogler, Tracy V.

A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

More Details

Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

Johnston, Mark D.; Hahn, Kelly D.; Rovang, Dean C.; Portillo, Salvador; Maenchen, John E.

Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

More Details

Catalytic properties of single layers of transition metal sulfide catalytic materials

Proposed for publication as an invited review article in Catalysis Reviews.

Wilcoxon, Jess P.; Abrams, B.L.

Single layer transition metal sulfides (SLTMS) such as MoS{sub 2}, WS{sub 2}, and ReS{sub 2}, play an important role in catalytic processes such as the hydrofining of petroleum streams, and are involved in at least two of the slurry-catalyst hydroconversion processes that have been proposed for upgrading heavy petroleum feed and other sources of hydrocarbon fuels such as coal and shale oils. Additional promising catalytic applications of the SLTMS are on the horizon. The physical, chemical, and catalytic properties of these materials are reviewed in this report. Also discussed are areas for future research that promise to lead to advanced applications of the SLTMS.

More Details

The influence of anode/target ion species on the magnetically immersed

Rovang, Dean C.; Madrid, Elizabeth A.

The magnetically immersed (B{sub z}) diode is being investigated as a source for pulsed-power driven flash radiography. Experiments fielding this diode have revealed a limit on its achievable current density on target. Either a small spot produces a low dose, or a high dose is achieved with a large spot. It has been proposed that this limit is due to non-protonic ions liberated from the anode surface and subsequently ionizing to higher states. The three-dimensional particle-in-cell code LSP is used to investigate this proposal. Data from the recent immersed diode experiments conducted on the RITS-3 accelerator are compared to LSP models of the experimental configuration, including the B{sub z} field map. We report on how the non-protonic and protonic ion models compare to data, and proposals for future investigation.

More Details

Seeded perturbations in wire array Z-Pinches

Jones, Brent M.; Deeney, Christopher D.; Mckenney, John M.; Garasi, Christopher J.; Mehlhorn, Thomas A.; Robinson, Allen C.; Coverdale, Christine A.

Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

More Details

Dynamics of copper wire arrays at 1 MA and 20 MA

Coverdale, Christine A.; Jones, Brent M.; Deeney, Christopher D.

Experiments to study the implosion dynamics and radiation characteristics of copper z-pinches have been fielded at the 1 MA Zebra facility and the 20 MA Z facility. The impact of initial load mass, initial load diameter, and nesting of wire arrays on the precursor and the stagnated plasma has been evaluated through spectroscopy, shadowgraphy, and fluence measurements. Plasma parameters extracted from modeling of the time-integrated L-shell spectra indicate the presence of more than one plasma source contributing to the radiation, likely due to non-uniform hot spot x-ray emission or temporal gradients.

More Details

Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

Proposed for publication in Plasma Physics and Controlled Fusion.

Cuneo, M.E.; Nash, Thomas J.; Yu, Edmund Y.; Mehlhorn, Thomas A.; Matzen, M.K.; Vesey, Roger A.; Bennett, Guy R.; Sinars, Daniel S.; Stygar, William A.; Rambo, Patrick K.; Smith, Ian C.; Bliss, David E.

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 {+-} 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

More Details

Onset of three-dimensional shear in granular flow

Proposed for publication in Physical Review Letters.

Lechman, Jeremy B.; Grest, Gary S.

The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a transition in the nature of the shear as a characteristic height H* is exceeded. Below H* there is a central stationary core; above H* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height, while the axial width remains narrow and fixed.

More Details

Ion mobility spectrometer / mass spectrometer (IMS-MS)

Hunka, Deborah E.

The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

More Details

Basin amplification of seismic waves in the city of Pahrump, Nevada

Abbott, Robert A.

Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.

More Details

Test results for 320 nm and 390 nm remote sensing sources using a 150 mJ, 100 Hz repetition rate, injection-seeded diode-pumped Nd:YAG slab-laser developed by Coherent Technologies, Inc

Armstrong, Darrell J.

This report describes results of tests using a laser system designed by Coherent Technologies, Inc., in conjunction with Sandia developed nonlinear optics technology. Test results are described for three different optical parametric oscillators built at Sandia. The report concludes with recommendations for future work.

More Details

1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires

AIP Conference Proceedings

Bielejec, E.; Seamons, J.A.; Lilly, M.P.; Reno, J.L.

We report low-dimensional transport and tunneling in an independently contacted vertically coupled quantum wire system, with a 7.5 nm barrier between the wires. The derivative of the linear conductance shows evidence for both single wire occupation and coupling between the wires. This provides a map of the subband occupation that illustrates the control that we have over the vertically coupled double quantum wires. Preliminary tunneling results indicate a sharp 1D-1D peak in conjunction with a broad 2D-2D background signal. This 1D-1D peak is sensitively dependent on the top and bottom split gate voltage. © 2005 American Institute of Physics.

More Details

Weak localization of dilute 2D electrons in undoped GaAs heterostructures

AIP Conference Proceedings

Lilly, M.P.; Bielejec, E.; Seamons, J.A.; Reno, J.L.

The temperature dependence of the resistivity and magnetoresistance of dilute 2D electrons are reported. The temperature dependence of the resistivity can be qualitatively described through phonon and ionized impurity scattering. While the temperature dependence indicates no ln(T) increase in the resistance, a sharp negative magnetoresistance feature is observed at small magnetic fields. This is shown to arise from weak localization. At very low density, we believe weak localization is still present, but cannot separate it from other effects that cause magnetoresistance in the semi-classical regime. © 2005 American Institute of Physics.

More Details

A theory of low-field, high-carrier-density breakdown in semiconductors

AIP Conference Proceedings

Kambour, K.; Hjalmarson, Harold P.; Myles, Charles W.

Collective impact ionization has been used to explain lock-on, an optically-triggered electrical breakdown occurring in some photoconductive semiconductor switches (PCSS's). Lock-on is observed in GaAs and InP but not in Si or GaP. Here, a rate equation implementation of collective impact ionization is discussed, and it leads to new insights both about intrinsic electrical breakdown in insulating materials in general and about lock-on specifically. In this approach, lock-on and electrical breakdown are steady state processes controlled by competition between carrier generation and recombination. This leads to theoretical definitions for both the lock-on field and the breakdown field. Our results show that lock-on is a carrier-density dependent form of electrical breakdown which exists in principle in all semiconductors. Results for GaAs, InP, Si, and GaP are discussed. © 2005 American Institute of Physics.

More Details

Ballistic to diffuse crossover in long quantum wires

AIP Conference Proceedings

Seamons, J.A.; Bielejec, E.; Lilly, M.P.; Reno, J.L.; Du, R.R.

We report a study on the uniformity of long quantum wires in the crossover from ballistic to diffuse transport with lengths ranging from 1 μm to 20 μm. For the 1 μm wire we measure 15 plateaus quantized at integer values of 2e2/h. With increasing length we observe plateaus at conductance values suppressed below the quantized values. With nonlinear fitting to the magnetoresistances we obtain an effective width for the quantum wires. As we find no systematic variation of the effective width as a function of sublevel index for the various length wires, we conclude that we have uniform long single quantum wires up to 20 μm. © 2005 American Institute of Physics.

More Details

Bulk GaN and AlGaNGaN heterostructure drift velocity measurements and comparison to theoretical models

Journal of Applied Physics

Barker, J.M.; Ferry, D.K.; Koleske, Daniel K.; Shul, Randy J.

The room-temperature velocity-field characteristics for n -type gallium nitride and AlGaNGaN heterostructures, grown epitaxially on sapphire, were determined experimentally. A pulsed voltage input and four-point measurements were used on special geometry samples to determine the electron drift velocity as a function of applied electric field in the basal plane. These measurements show apparent saturation velocities near 2.5× 107 cms at 180 kVcm for the n -type gallium nitride and 3.1× 107 cms at 140 kVcm for the AlGaNGaN heterostructures. A comparison of these studies shows that the experimental velocities are close to previously published simulations based upon Monte Carlo techniques. © 2005 American Institute of Physics.

More Details

All solid-state high-efficiency source for satellite-based UV ozone DIAL

Proceedings of SPIE - The International Society for Optical Engineering

Armstrong, Darrell J.; Smith, A.V.

During the past several years Sandia National Laboratories has carried out proof-of-concept experiments to demonstrate tunable, efficient, high-energy ultraviolet nanosecond light sources for satellite-based ozone DIAL. We designed our UV sources to generate pulse energies ≳ 200 mJ at 10 Hz in the range of 308-320 nm with optical-to-optical efficiency approaching 25%. We use sum-frequency generation to mix the 532 nm second harmonic of Nd:YAG with near-IR light derived from a self-injection-seeded image-rotating nonplanar-ring optical parametric oscillator. Laboratory configurations using extra- and intra-cavity sum-frequency generation were designed and tested, yielding 1064 nm to 320 nm conversion efficiencies of 21% and 23% respectively, with pulse energies of 190 mJ and 70 mJ. These energies and efficiencies require pump depletion in the parametric oscillator of at least 80% and SFG efficiency approaching 60%. While the results reported here fall slightly short of our original goals, we believe UV pulse energies exceeding 250 mJ are possible with additional refinements to our technology. Although the sources tested to date are laboratory prototypes with extensive diagnostics, the core components are compact and mechanically robust and can easily be packaged for satellite deployment.

More Details

Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and γ-irradiation

Macromolecules

Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Clough, Roger L.; Bernstein, Robert

Unstabilized polypropylene (PP) films having selective 13C isotopic labeling were subjected to thermal aging at 50, 80, and 109 °C and to γ-irradiation at 24 and 80°C. The oxidized films were examined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Dramatic differences were found in the type and distribution of oxidation products originating from the three carbon atom sites within the PP macromolecule (tertiary carbon, secondary carbon, and methyl side group). Most of the oxidation products that formed on the polymer chain originated through chemical reactions at the PP tertiary carbons. Under all of the aging conditions examined, tertiary peroxides (from the PP tertiary site) were the most abundant functional group produced. Also originating from the PP tertiary carbon were significant amounts of tertiary alcohols, together with several more minor products that included "chain-end" methyl ketones. No significant amount of peroxides or alcohols associated with the PP secondary carbon sites was detected. A substantial yield of carboxylate groups was identified (acids, esters, etc.). The majority of these originated from the PP secondary carbon site, from which other minor products also formed, including in-chain ketones. We found no measurable yield of oxidation products originating from reaction at the PP methyl group. Remarkably similar distributions of the major oxidation products were obtained for thermal aging at different temperatures, whereas the product distributions obtained for irradiation at the different temperatures exhibited significant differences. Time-dependent concentration plots have been obtained, which show the amounts of the various oxidation products originating at the different PP sites, as a function of the extent of material oxidation. © 2005 American Chemical Society.

More Details

Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer

Applied Physics Letters

Gao, J.R.; Hovenier, J.N.; Yang, Z.Q.; Baselmans, J.J.A.; Baryshev, A.; Hajenius, M.; Klapwijk, T.M.; Adam, A.J.L.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability. © 2005 American Institute of Physics.

More Details

BAC-MP4 predictions of thermochemistry for gas-phase tin compounds in the Sn-H-C-Cl system

Journal of Physical Chemistry A

Allendorf, Mark D.; Melius, Carl F.

In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study. Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds. © 2005 American Chemical Society.

More Details

The vinyl + NO Reaction: Determining the products with time-resolved fourier transform spectroscopy

Journal of Physical Chemistry A

Zou, Peng; Klippenstein, Stephen J.; Osborn, David L.

We have studied the vinyl + NO reaction using time-resolved Fourier transform emission spectroscopy, complemented by electronic structure and microcanonical RRKM rate coefficient calculations. To unambiguously determine the reaction products, three precursors are used to produce the vinyl radical by laser photolysis: vinyl bromide, methyl vinyl ketone, and vinyl iodide. The emission spectra and theoretical calculations indicate that HCN + CH 2O is the only significant product channel for the C 2H 3 + NO reaction near room temperature, in contradiction to several reports in the literature. Although CO emission is observed when vinyl bromide is used as the precursor, it arises from the reaction of NO with photofragments other than vinyl. This conclusion is supported by the absence of CO emission when vinyl iodide or methyl vinyl ketone is used. Prompt emission from vibrationally excited NO is evidence of the competition between back dissociation and isomerization of the initially formed nitrosoethylene adduct, consistent with previous work on the pressure dependence of this reaction. Our calculations indicate that production of products is dominated by the low energy portion of the energy distribution. The calculation also predicts an upper bound of 0.19% for the branching ratio of the H 2CNH + CO channel, which is consistent with our experimental results. © 2005 American Chemical Society.

More Details

Dissolutive wetting of Ag on Cu: A molecular dynamics simulation study

Acta Materialia

Webb, Edmund B.; Grest, Gary S.; Heine, David R.; Hoyt, J.J.

Reactive wetting in the eutectic AgCu system is studied with molecular dynamics simulations. As Ag(l) spreads on the Cu surface, Cu dissolves into the liquid. The results for reactive wetting are compared to simulations in which no mixing is permitted, demonstrating that wetting kinetics are enhanced by dissolution reactions. The time dependent radius of the droplet R(t) is used to quantify kinetics for the wetting geometry of an infinitely long cylinder spreading on a substrate. Data show that, when dissolution is dominant, spreading is well described by R(t) ∼ (R0t)1/2, where R0 is the starting cylinder radius. Contact angle θ(t) data were calculated via a method that accounts for structure near the contact region and compared to data obtained using circular fits to the droplet profile. Significant differences were observed due to molecular scale structure that rapidly evolves near the contact line. This structure exhibits markedly lower θ than what is predicted from droplet profile data and it is proposed to exist throughout most stages of dissolutive wetting. Simulations of AgCu binary liquids spreading on Cu demonstrate that wetting kinetics decrease with increasing Cu in the liquid, further emphasizing that wetting kinetics are intrinsically linked to dissolution kinetics. After dissolution is complete, a Ag-rich monolayer of atoms advances diffusively across the Cu surface. © 2005 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

More Details

Nylon 6.6 accelerated aging studies: Thermal-oxidative degradation and its interaction with hydrolysis

Polymer Degradation and Stability

Bernstein, Robert; Derzon, Dora K.; Gillen, Kenneth T.

Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 °C to 138 °C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions. Published by Elsevier Ltd.

More Details

Internal dosimetry: A review

Health Physics

Potter, Charles A.

The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction. Copyright © 2005 Health Physics Society.

More Details

Quantifying uncertainty in chemical systems modeling

International Journal of Chemical Kinetics

Reagan, M.T.; Najm, H.N.; Pébay, P.P.; Knio, O.M.; Ghanem, R.G.

This study compares two techniques for uncertainty quantification in chemistry computations, one based on sensitivity analysis and error propagation, and the other on stochastic analysis using polynomial chaos techniques. The two constructions are studied in the context of H 2-O 2 ignition under supercritical-water conditions. They are compared in terms of their prediction of uncertainty in species concentrations and the sensitivity of selected species concentrations to given parameters. The formulation is extended to one-dimensional reacting-flow simulations. The computations are used to study sensitivities to both reaction rate pre-exponentials and enthalpies, and to examine how this information must be evaluated in light of known, inherent parametric uncertainties in simulation parameters. The results indicate that polynomial chaos methods provide similar first-order information to conventional sensitivity analysis, while preserving higher-order information that is needed for accurate uncertainty quantification and for assigning confidence intervals on sensitivity coefficients. These higher-order effects can be significant, as the analysis reveals substantial uncertainties in the sensitivity coefficients themselves. © 2005 Wiley Periodicals, Inc.

More Details

Open literature review of threats including sabotage and theft of fissile material transport in Japan

Cochran, John R.; Furaus, James P.

This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

More Details

Tungsten wire number dependence of the implosion dynamics at the Z-accelerator

Plasma Devices and Operations

Mazarakis, Michael G.; Deeney, C.E.; Douglas, M.R.; Stygar, William A.; Sinars, Daniel S.; Cuneo, M.E.; Chittenden, J.; Chandler, G.A.; Nash, T.J.; Struve, K.W.; McDaniel, D.H.

In this paper, we report the results of an experimental campaign to study the initiation, implosion dynamics and radiation yield of tungsten wire arrays as a function of the wire number. An optimization study of the X-ray emitted peak power, rise time and FWHM was effectuated by varying the wire number while keeping the total array mass constant at ∼5.8mg. The driver used was the ∼20MA Z-accelerator, in its usual short pulse mode of 100ns. We studied single arrays of diameter 20mm and height 10mm. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest wire number achievable with present-day technology. Radial and axial diagnostics were used, including a crystal monochromatic X-ray backlighter. An optimum wire number of ∼370 was observed, which is very close to the number (300) routinely used for the ICF program in Sandia. © 2005 Taylor & Francis Group Ltd.

More Details

Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve

Lord, David L.

Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were cooled sufficiently that the cavern required about 9 years to return to the temperature prior to degas. Upon reviewing these results, the authors recommended to the U.S. Department of Energy that a broader study of the cooling during degas be pursued in order to examine the potential benefits of cooling on all caverns in the current degasification schedule.

More Details

PACFEST 2004 : enabling technologies for maritime security in the Pacific region

Moore, Judy H.; Whitley, John B.

In October of 2003 experts involved in various aspects of homeland security from the Pacific region met to engage in a free-wheeling discussion and brainstorming (a 'fest') on the role that technology could play in winning the war on terrorism in the Pacific region. The result was a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrations of advanced technological solutions to these issues. Since PacFest 2003, the maritime dimensions of the international security environment have garnered increased attention and interest. To this end, PacFest 2004 sought to identify gaps and enabling technologies for maritime domain awareness and responsive decision-making in the Asia-Pacific region. The PacFest 2004 participants concluded that the technologies and basic information building blocks exist to create a system that would enable the Pacific region government and private organizations to effectively collaborate and share their capabilities and information concerning maritime security. The proposed solution summarized in this report integrates national environments in real time, thereby enabling effective prevention and first response to natural and terrorist induced disasters through better use of national and regional investments in people, infrastructure, systems, processes and standards.

More Details

LIGA-based microsystem manufacturing:the electrochemistry of through-mold depostion and material properties

Goods, Steven H.

The report presented below is to appear in ''Electrochemistry at the Nanoscale'', Patrik Schmuki, Ed. Springer-Verlag, (ca. 2005). The history of the LIGA process, used for fabricating dimensional precise structures for microsystem applications, is briefly reviewed, as are the basic elements of the technology. The principal focus however, is on the unique aspects of the electrochemistry of LIGA through-mask metal deposition and the generation of the fine and uniform microstructures necessary to ensure proper functionality of LIGA components. We draw from both previously published work by external researchers in the field as well as from published and unpublished studies from within Sandia.

More Details

Site environmental report for 2004 Sandia National Laboratories, California

Larsen, Barbara L.

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

More Details

The role of customized computational tools in product development

Heinstein, Martin W.; Kempka, Steven N.

Model-based computer simulations have revolutionized product development in the last 10 to 15 years. Technologies that have existed for many decades or even centuries have been improved with the aid of computer simulations. Everything from low-tech consumer goods such as detergents, lubricants and light bulb filaments to the most advanced high-tech products such as airplane wings, wireless communication technologies and pharmaceuticals is engineered with the aid of computer simulations today. In this paper, we present a framework for describing computational tools and their application within the context of product engineering. We examine a few cases of product development that integrate numerical computer simulations into the development stage. We will discuss how the simulations were integrated into the development process, what features made the simulations useful, the level of knowledge and experience that was necessary to run meaningful simulations and other details of the process. Based on this discussion, recommendations for the incorporation of simulations and computational tools into product development will be made.

More Details

Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask

Wente, William W.

The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

More Details

Relationship between ignition processes and the lift-off length of diesel fuel jets

Pickett, Lyle M.; Siebers, Dennis L.; Idicheria, Cherian I.

The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization. Experiments were performed in the same optically-accessible combustion vessel as the previous lift-off research. The experimental results show that the ignition quality of a fuel affects lift-off. Fuels with shorter ignition delays generally produce shorter lift-off lengths. In addition, a cool flame is found upstream of, or near the same axial location as, the quasi-steady lift-off length, indicating that first-stage ignition processes affect lift-off. High-speed chemiluminescence imaging also shows that high-temperature self-ignition occasionally occurs in kernels that are upstream of, and detached from, the high-temperature reaction zone downstream, suggesting that the lift-off stabilization is not by flame propagation into upstream reactants in this instance. Finally, analysis of the previous lift-off length database shows that the time-scale for jet mixing from injector-tip orifice to lift-off length collapses to an Arrhenius-type expression, a common method for describing ignition delay in diesel sprays. This Arrhenius-based lift-off length correlation shows comparable accuracy as a previous power-law fit of the No.2 diesel lift-off length database.

More Details

Theory and experimental validation of SPLASH (Single Panel Lamp and Shroud Helper)

The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly program that allows a designer to describe a test setup in terms of parameters such as lamp number, power, position, and separation distance. Thermal radiation is the dominant mechanism of heat transfer and the SPLASH model solves a radiation enclosure problem to estimate temperature distributions in a shroud providing the boundary condition of interest. Irradiance distribution on a specified viewing plane is also estimated. This document provides the theoretical development for the underlying model. A series of tests were conducted to characterize SPLASH's ability to analyze lamp and shroud systems. The comparison suggests that SPLASH succeeds as a design tool. Simplifications made to keep the model tractable are demonstrated to result in estimates that are only approximately as uncertain as many of the properties and characteristics of the operating environment.

More Details

Benchmarking survey for recycling

This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

More Details

Towards a specification for measuring red storm reliability, availability, and serviceability (RAS)

Stearley, Jon S.

The absence of agreed definitions and metrics for supercomputer RAS obscures meaningful discussion of the issues involved, hinders their solution, and increases total system cost. Seeking to foster a common basis for communication about supercomputer RAS, [1] proposed a general system state model, definitions, and measurements based on the SEMI-E10 specification [2] used in the semiconductor manufacturing industry. This document enumerates the platform-specific details necessary to apply that general framework to the Red Storm system at Sandia National Laboratories. Familiarity with [1] is a strong prerequisite for understanding of this document, as is familiarity with the Red Storm RAS subsystem (although to a much lesser degree). Given the current pre-production status of Red Storm, this document does not specify actual policy or practice, but rather proposes a framework by which to measure RAS performance on Red Storm.

More Details

Network protocol changes can improve DisCom WAN performance : evaluating TCP modifications and SCTP in the ASC tri-lab environment

Tolendino, Lawrence F.; Hu, Tan C.

The Advanced Simulation and Computing (ASC) Distance Computing (DisCom) Wide Area Network (WAN) is a high performance, long distance network environment that is based on the ubiquitous TCP/IP protocol set. However, the Transmission Control Protocol (TCP) and the algorithms that govern its operation were defined almost two decades ago for a network environment vastly different from the DisCom WAN. In this paper we explore and evaluate possible modifications to TCP that purport to improve TCP performance in environments like the DisCom WAN. We also examine a much newer protocol, SCTP (Stream Control Transmission Protocol) that claims to provide reliable network transport while also implementing multi-streaming, multi-homing capabilities that are appealing in the DisCom high performance network environment. We provide performance comparisons and recommendations for continued development that will lead to network communications protocol implementations capable of supporting the coming ASC Petaflop computing environments.

More Details

Mechanical properties of thermal protection system materials

Hofer, John H.; Bronowski, David R.; Hardy, Robert D.

An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

More Details

Development of bonded composite doublers for the repair of oil recovery equipment

Roach, D.; Rackow, Kirk

An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

More Details

Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume

Domino, Stefan P.; Black, Amalia R.

A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the model is noted.

More Details

A decision-theoretic method for surrogate model selection

Field, Richard V.

The use of surrogate models to approximate computationally expensive simulation models, e.g., large comprehensive finite element models, is widespread. Applications include surrogate models for design, sensitivity analysis, and/or uncertainty quantification. Typically, a surrogate model is defined by a postulated functional form; values for the surrogate model parameters are estimated using results from a limited number of solutions to the comprehensive model. In general, there may be multiple surrogate models, each defined by possibly a different functional form, consistent with the limited data from the comprehensive model. We refer to each as a candidate surrogate model. Methods are developed and applied to select the optimal surrogate model from the collection of candidate surrogate models. The classical approach is to select the surrogate model that best fits the data provided by the comprehensive model; this technique is independent of the model use and, therefore, may be inappropriate for some applications. The proposed approach applies techniques from decision theory, where postulated utility functions are used to quantify the model use. Two applications are presented to illustrate the methods. These include surrogate model selection for the purpose of: (1) estimating the minimum of a deterministic function, and (2) the design under uncertainty of a physical system.

More Details

Branched vs. linear hydrocarbon separations with novel modified zeolites

Nenoff, T.M.

The conclusions of this paper are: (1) Adsorption/desorption on bulk unmodified zeolites showed isoprene adsorbed by zeolite-L and n-pentane adsorbed by zeolite-Y and ZSM-5; (2) Bulk carbonization is used to passivate zeolite activity toward organic adsorption/decomposition; (3) Based on the bulk modified zeolite separation results, we have determined that the MFI type has the most potential for isoprene enrichment; (4) Modified MFI type membrane are jointly made by Sandia and the Univ. of Colorado. Separation experiments are performed by Goodyear Chemical; (5) Isoprene/n-pentane separations have been demonstrated by using both zeolite membranes and modified bulk zeolites at various temperatures on the Goodyear Pilot-scale unit; and (6) Target zeolite membrane separations values of 6.7% isoprene enrichment have been established by economic analysis calculations by Burns & McDonnell.

More Details

Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo

We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems.

More Details

Coupled Mesh Lagrangian/ALE modeling: opportunities and challenges

Bishop, Joseph E.; Hensinger, David M.; Voth, Thomas E.; Wong, Michael K.; Robinson, Allen C.

The success of Lagrangian contact modeling leads one to believe that important aspects of this capability may be used for multi-material modeling when only a portion of the simulation can be represented in a Lagrangian frame. We review current experience with two dual mesh technologies where one of these meshes is a Lagrangian mesh and the other is an Arbitrary Lagrangian/Eulerian (ALE) mesh. These methods are cast in the framework of an operator-split ALE algorithm where a Lagrangian step is followed by a remesh/remap step. An interface-coupled methodology is considered first. This technique is applicable to problems involving contact between materials of dissimilar compliance. The technique models the more compliant (soft) material as ALE while the less compliant (hard) material and associated interface are modeled in a Lagrangian fashion. Loads are transferred between the hard and soft materials via explicit transient dynamics contact algorithms. The use of these contact algorithms remove the requirement of node-tonode matching at the soft-hard interface. In the context of the operator-split ALE algorithm, a single Lagrangian step is performed using a mesh to mesh contact algorithm. At the end of the Lagrangian step the meshes will be slightly offset at the interface but non-interpenetrating. The ALE mesh nodes at the interface are then remeshed to their initial location relative to the Lagrangian body faces and the ALE mesh is smoothed, translated and rotated to follow Lagrangian body. Robust remeshing in the ALE region is required for success of this algorithm, and we describe current work in this area. The second method is an overlapping grid methodology that requires mapping of information between a Lagrangian mesh and an ALE mesh. The Lagrangian mesh describes a relatively hard body that interacts with softer material contained in the ALE mesh. A predicted solution for the velocity field is performed independently on both meshes. Element-centered velocity and momentum are transferred between the meshes using the volume transfer capability implemented in contact algorithms. Data from the ALE mesh is mapped to a phantom mesh that surrounds the Lagrangian mesh, providing for the reaction to the predicted motion of the Lagrangian material. Data from the Lagrangian mesh is mapped directly to the ALE mesh. A momentum balance is performed on both meshes to adjust the velocity field to account for the interaction of the material from the other mesh. Subsequent, remeshing and remapping of the ALE mesh is performed to allow large deformation of the softer material. We overview current progress using this approach and discuss avenues for future research and development.

More Details

Initial design and results from an ion current collection diagnostic for the triggered plasma opening switch experiment

Jackson, Daniel P.; Savage, Mark E.; Seidel, David B.

Study of the triggered plasma opening switch (TPOS) characteristics is in progress via an ion current collection diagnostic (ICCD), in addition to offline apparatus. This initial ion current collection diagnostic has been designed, fabricated, and tested on the TPOS in order to explore the opening profile of the main switch. The initial ion current collection device utilizes five collectors which are positioned perpendicularly to the main switch stage in order to collect radially traveling ions. It has been shown through analytical prowess that this specific geometry can be treated as a planar case of the Child-Langmuir law with only a 6% deviation from the cylindrical case. Additionally, magnetostatic simulations with self consistent space charge emitting surfaces of the main switch using the Trak code are under way. It is hoped that the simulations will provide evidence in support of both the analytical derivations and experimental data. Finally, an improved design of the ICCD (containing 12 collectors in the axial direction) is presently being implemented.

More Details

Applications of algebraic topology to compatible spatial discretizations

Bochev, Pavel B.

We provide a common framework for compatible discretizations using algebraic topology to guide our analysis. The main concept is the natural inner product on cochains, which induces a combinatorial Hodge theory. The framework comprises of mutually consistent operations of differentiation and integration, has a discrete Stokes theorem, and preserves the invariants of the DeRham cohomology groups. The latter allows for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume and finite difference methods. We describe how these methods result from the choice of a reconstruction operator and when they are equivalent.

More Details
Results 84301–84400 of 96,771
Results 84301–84400 of 96,771