Publications

Results 91351–91400 of 99,299

Search results

Jump to search filters

Factors controlling satiated relative permeability in a partially-saturated horizontal fracture

Water Resources Research

Glass Jr., Robert J.

Recent work demonstrates that phase displacements within horizontal fractures large with respect to the spatial correlation length of the aperture field lead to a satiated condition that constrains the relative permeability to be less than one. The authors use effective media theory to develop a conceptual model for satiated relative permeability, then compare predictions to existing experimental measurements, and numerical solutions of the Reynolds equation on the measured aperture field within the flowing phase. The close agreement among all results and data show that for the experiments considered here, in-plane tortuosity induced by the entrapped phase is the dominant factor controlling satiated relative permeability. They also find that for this data set, each factor in the conceptual model displays an approximate power law dependence on the satiated saturation of the fracture.

More Details

Stability characterizations of fixtured rigid bodies with Coulomb friction

Trinkle, Jeffrey C.

This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.

More Details

An implicit time-stepping scheme for rigid body dynamics with Coulomb friction

Trinkle, Jeffrey C.

In this paper a new time-stepping method for simulating systems of rigid bodies is given. Unlike methods which take an instantaneous point of view, the method is based on impulse-momentum equations, and so does not need to explicitly resolve impulsive forces. On the other hand, the method is distinct from previous impulsive methods in that it does not require explicit collision checking and it can handle simultaneous impacts. Numerical results are given for one planar and one three-dimensional example, which demonstrate the practicality of the method, and its convergence as the step size becomes small.

More Details

Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

Ultrapure Water

Mowry, Curtis D.; Blair, Dianna S.; Morrison, Dennis J.; Reber, Stephen D.; Rodacy, Philip J.

An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.

More Details

Highly-Efficient Buried-Oxide-Waveguide Laser by selective Oxidation

IEEE Photonics Technology Letters

Vawter, Gregory A.; Spahn, Olga B.; Allerman, A.A.

An edge-emitting buried-oxide waveguide (BOW) laser structure employing lateral selective oxidation of AlGaAs layers above and below the active region for waveguiding and current confinement is presented. This laser configuration has the potential for very small lateral optical mode size and high current confinement and is well suited for integrated optics applications where threshold current and overall efficiency are paramount. Optimization of the waveguide design, oxide layer placement, and bi-parabolic grading of the heterointerfaces on both sides of the AlGaAs oxidation layers has yielded 95% external differential quantum efficiency and 40% wall-plug efficiency from a laser that is very simple to fabricate and does not require epitaxial regrowth of any kind.

More Details

Three-dimensional control of light in a two-dimensional photonic crystal slab

Nature

Chow, Kai-Cheung; Allerman, A.A.; Lin, Shawn-Yu; Wendt, Joel R.; Vawter, Gregory A.; Zubrzycki, Walter J.

A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.

More Details

Electron-gun-controlled thin film mirrors for remote sensing applications

Henson, Tammy D.; Redmond, James M.; Wehlburg, Joseph C.

The ultimate limitation in obtainable resolution and sensitivity for space-based imaging systems is the size of the optical collecting aperture. Large collecting apertures are at odds with maintaining low launch costs and with current launch vehicle configurations. Development of a deployable mirror is one approach being considered to satisfy these conflicting requirements. The focus of this research is to develop fundamental technology toward the realization of deployable electron-gun-controlled piezoelectric thin films mirrors as shown below. A bimorph layer of film will bend in response to an applied electric field and can therefore be deformed into desirable shapes using a scanning electron gun. Surface curvature measurements govern the electron gun scanning strategy, yielding distributed shape corrections.

More Details

Pressure as a probe of the physics of ABO{sub 3} relaxor ferroelectrics

Samara, George A.

Results on a variety of mixed ABO{sub 3} oxides have revealed a pressure-induced ferroelectric-to-relaxor crossover and the continuous evolution of the energetics and dynamics of the relaxation process with increasing pressure. These common features have suggested a mechanism for the crossover phenomenon in terms of a large decrease in the correlation length for dipolar interactions with pressure--a unique property of soft mode or highly polarizable host lattices. The pressure effects as well as the interplay between pressure and dc biasing fields are illustrated for some recent results on PZN-9.5 PT,PMN and PLZT 6/65/35.

More Details

The generation of hexahedral meshes for assembly geometries: A survey

International Journal for Numberical Methods in Engineering

Tautges, Timothy J.

The finite element method is being used today to model component assemblies in a wide variety of application areas, including structural mechanics, fluid simulations, and others. Generating hexahedral meshes for these assemblies usually requires the use of geometry decomposition, with different meshing algorithms applied to different regions. While the primary motivation for this approach remains the lack of an automatic, reliable all-hexahedral meshing algorithm, requirements in mesh quality and mesh configuration for typical analyses are also factors. For these reasons, this approach is also sometimes required when producing other types of unstructured meshes. This paper will review progress to date in automating many parts of the hex meshing process, which has halved the time to produce all-hex meshes for large assemblies. Particular issues which have been exposed due to this progress will also be discussed, along with their applicability to the general unstructured meshing problem.

More Details

Nature, strength, and consequences of indirect adsorbate interactions on metals

Physical Review Letters

Bogicevic, Alexander; Jennison, Dwight R.

Atoms and molecules adsorbed on metals affect each other even over considerable distances. In a tour-de-force of density-functional methods, the authors establish the nature and strength of such indirect interactions, and explain for what adsorbate systems they can critically affect important materials properties. These perceptions are verified in kinetic Monte Carlo simulations of epitaxial growth, and help rationalize a cascade of recent experimental reports on anomalously low diffusion prefactors. The authors focus their study on two metal systems: Al/Al(111) and Cu/Cu(111).

More Details

A spray-suppression model for turbulent combustion

Desjardin, Paul E.; Tieszen, Sheldon R.; Gritzo, Louis A.

A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.

More Details

Line of Sight: A process for transferring science from the laboratory to the market place

Lombana, Cesar A.; Hunter, Willard B.; Romig Jr., Alton D.

Commercialization and transfer of technology from laboratories in academia, government, and industry has only met a fraction of its potential and is currently an art not a science. The line of sight approach developed and in use at Sandia National Laboratories, is used to better understand commercialization and transfer of technology. The line of sight process integrates technology description, the dual process model of innovation and the product introduction model. The model, that the line of sight is based OR is presented and the application of the model to both disruptive and sustaining technologies is illustrated. Work to date suggests that the differences between disruptive and sustaining technologies are critical to quantifying the level of risk and choosing the commercialization path. The applicability of the line of sight to both disruptive and sustaining technologies is key to the success of the model and approach.

More Details

Application of Knowledge Management: Pressing questions and practical answers

Fromm-Lewis, Michelle

Sandia National Laboratory are working on ways to increase production using Knowledge Management. Knowledge Management is: finding ways to create, identify, capture, and distribute organizational knowledge to the people who need it; to help information and knowledge flow to the right people at the right time so they can act more efficiently and effectively; recognizing, documenting and distributing explicit knowledge (explicit knowledge is quantifiable and definable, it makes up reports, manuals, instructional materials, etc.) and tacit knowledge (tacit knowledge is doing and performing, it is a combination of experience, hunches, intuition, emotions, and beliefs) in order to improve organizational performance and a systematic approach to find, understand and use knowledge to create value.

More Details

Small area analysis using micro-diffraction techniques

Goehner, Raymond P.; Tissot, Ralph G.; Michael, Joseph R.

An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 {micro}m to 100 {micro}m. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30{micro}m glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been used for simultaneous element identification which enhances phase identification of unknowns. The x-ray area detector also allows for rapid microstructure information including crystallite orientation and size by directly observing the diffraction rings. These techniques allow for small area analysis that in the past would have been difficult if not impossible to obtain. The future development in x-ray optics and the use of synchrotron sources will allow for the potential of nondestructive submicron x-ray diffraction analysis.

More Details

Prospecting for lunar ice using a multi-rover cooperative team

Klarer, Paul R.; Feddema, John T.; Lewis, Christopher L.

A multi-rover cooperative team or swarm developed by Sandia National Laboratories is described, including various control methodologies that have been implemented to date. How the swarm's capabilities could be applied to a lunar ice prospecting mission is briefly explored. Some of the specific major engineering issues that must be addressed to successfully implement the swarm approach to a lunar surface mission are outlined, and potential solutions are proposed.

More Details

Reaction synthesis of Ni-Al based particle composite coatings

Metallurgical and Materials Transactions

Susan, Donald F.

Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 volume percent aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 to 1,000 C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500--600 C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600--1,000 C), diffusional reaction between NiAl and nickel produces ({gamma})Ni{sub 3}Al. The final equilibrium microstructure consists of blocks of ({gamma}{prime})Ni{sub 3}Al in a {gamma}(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.

More Details

On numerical techniques for the transformation to an orthogonal coordinate system aligned with a vector field

Computers and Mathamatics with Applications

Otto, James S.

The authors explore the use of variational grid-generation to perform alignment of a grid with a given vector field. Variational methods have proven to be a powerful class of grid-generators, but when they are used in alignment, difficulties may arise in treating boundaries due to an incompatibility between geometry and vector field. In this paper, a refinement of the procedure of iterating boundary values is presented. It allows one to control the quality of the grid in the face of the above-mentioned incompatibility. This procedure may be incorporated into any variational alignment algorithm. The authors demonstrate its use with respect to a new quasi-variational alignment method having a particularly simple structure. The latter method is comparable to Knupp's method (see [7]), but avoids use of the Winslow equations.

More Details

Extending purchasing with document management, workflow and the internet

Simpson, Suzanne L.; Perich, Julie K.

Sandia is a national security laboratory operated for the U.S. department of Energy by the Sandia Corporation, a Lockheed Martin Company. Sandia designs all non-nuclear components for the nation's nuclear weapons, performs a wide variety of energy research and development projects, and works on assignments that respond to national security threats - both military and economic. They encourage and seek partnerships with appropriate U.S. industry and government groups to collaborate on emerging technologies that support their mission. Today, Sandia has two primary facilities, one in Albuquerque, New Mexico, and one in Livermore, California. They employ about 7,600 people and manage about $1.4 billion of work per year. In 1995, a decision was made to move from their in-house developed systems to commercial software. This decision was driven partly by Y2K compliance issues associated with the existing operating system and support environment. Peoplesoft was selected for human resources and Oracle for manufacturing and financial. They implemented Peoplesoft for human resources (HR) in 1997. They then implemented 7 Oracle modules in manufacturing in October 1998, including WIP, BOM, engineering, quality, inventory, MRP, cost management and limited HR/purchasing/receiving functionality required to support manufacturing. In March of 1999, they brought a portion of their Projects module up to allow for input of project/task information by their line customers and on October 1, 1999, they went live with the fill-blown financial package. They implemented projects, GL, receivables, payables, purchasing, assets and incorporated manufacturing modules and HR. This paper will discuss the analysis and implementation of the purchasing module.

More Details

Optical patterning of photosensitive thin film silica mesophases

Science

Hurd, Alan J.; Brinker, C.J.

Photosensitive films incorporating molecular photoacid generators compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-induced self-assembly process. UV-exposure promoted localized acid-catalyzed siloxane condensation, enabling selective etching of unexposed regions, thereby serving as a resistless technique to prepare patterned mesoporous silica. The authors also demonstrated an optically-defined mesophase transformation (hexagonal {r_arrow} tetragonal) and patterning of refractive index and wetting behavior. Spatial control of structure and function on the macro- and mesoscales is of interest for sensor arrays, nano-reactors, photonic and fluidic devices, and low dielectric constant films. More importantly, it extends the capabilities of conventional lithography from spatially defining the presence or absence of film to spatial control of film structure and function.

More Details

A practical implementation of BICS for safety-critical applications

Smith, Patricia A.; Campbell, David V.

This paper presents the challenges and solutions of applying Built-In-Current Sensors (BICS) to a safety-critical IC design for the purpose of in-situ state-of-health monitoring. The developed Quiscent Current Monitor (QCM) system consists of multiple BISC and digital control logic. The QCM BICS can detect leakage current as low as 4 {micro}A, run at system speed, and has relatively low real estate overhead. The QCM digital logic incorporates extensive debug capability and Built-In-Self-Test (BIST). The authors performed analog and digital simulations of the integrated BICS, and performed layout and tapeout of the design. Silicon is now in fabrication. Results to date show that, for some systems, BICS can be a practical and relatively inexpensive method for providing state-of-health monitoring of safety-critical microelectronics.

More Details

First observation of mechanochromism at the nanometer scale

Langmuir

Carpick, R.W.

A mechanically induced color transition ('mechanochromism') in poly(diacetylene) thin films has been generated at the nanometer scale using the tips of two different scanning probe microscopes. A blue-to-red chromatic transition in poly(diacetylene) molecular trilayer films, polymerized from 10,12-pentacosadiynoic acid (poly-PCDA), was found to result from shear forces acting between the tip and the poly-PCDA molecules, as independently observed with near-field scanning optical microscopy and atomic force microscopy (AFM). Red domains were identified by a fluorescence emission signature. Transformed regions as small as 30 nm in width were observed with AFM. The irreversibly transformed domains preferentially grow along the polymer backbone direction. Significant rearrangement of poly-PCDA bilayer segments is observed by AFM in transformed regions. The rearrangement of these segments appears to be a characteristic feature of the transition. To our knowledge, this is the first observation of nanometer-scale mechanochromism in any material.

More Details

Q-switched operation of a coupled-resonator vertical-cavity laser diode

Applied Physics Letters

Fischer, Arthur J.; Chow, Weng W.; Choquette, Kent D.; Allerman, A.A.; Geib, Kent M.

The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

More Details

Summary of the Solar Two Test and Evaluation Program

Pacheco, James E.; Reilly, Hugh E.; Kolb, Gregory J.; Tyner, Craig E.

Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

More Details

Atomic-scale identification of Ge/Si intermixing on Si(100) at submonolayer Ge coverages

Physical Review Letters

Swartzentruber, Brian

The positions of Ge atoms intermixed in the Si(100) surface at very low concentration are identified using empty-state imaging in scanning tunneling microscopy. A measurable degree of place exchange occurs at temperatures as low as 330 K. Contrary to earlier conclusions, good differentiation between Si atoms and Ge atoms can be achieved by proper imaging conditions.

More Details

Improved performance of Li-ion cells under pulsed load using double-layer capacitors in a hybrid circuit mode

Journal of Power Sources

Roth, Emanuel P.; Nagasubramanian, Ganesan

Electrical characteristics of hybrid power sources consisting of Li-ion cells and double-layer capacitors were studied at 25 C and {minus}20 C. The cells were initially evaluated for pulse performance and then measured in hybrid modes of operation where they were coupled with the high-power capacitors. Cells manufactured by Panasonic measured at 25 C delivered full capacities of 0.76 Ah for pulses up to 3A and cells from A and T delivered full capacities of 0.73 Ah for pulses up to 4A. Measured cell resistances were 0.15 ohms and 0.12 ohms, respectively. These measurements were repeated at {minus}20 C. Direct coupling of the cells and capacitors (coupled hybrid) using 10F Panasonic capacitors in a 8F series/parallel combination extended the full capacity pulse limits (3.0V threshold) to 5.6A for the Panasonic cells and to 9A for the A and T cells. A similar arrangement using 100F capacitors from Elna in a 60F combination increased the Panasonic cell limit to 10 A. Operation in an uncoupled hybrid mode using uncoupled cell/capacitor discharge allowed fill cell capacity usage at 25 C up to the capacitor discharge limit and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

More Details

Thermal stability of electrodes in Lithium-ion cells

Journal of the Electrochemical Society

Roth, Emanuel P.; Nagasubramanian, Ganesan

Differential scanning calorimetry (DSC) analysis was used to identify thermal reactions in Sony-type lithium-ion cells and to correlate these reactions with interactions of cell constituents and reaction products. An electrochemical half-cell was used to cycle the anode and cathode materials and to set the state-of-charge (SOC). Three temperature regions of interaction were identified and associated with the SOC (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 80 C involving decomposition of the solid electrolyte interphase (SEI) layer. The LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/1M LiPF{sub 6}) was seen to play an essential role in this reaction. DSC analysis of the anodes from disassembled Sony cells showed similar behavior to the half-cell anodes with a strong exotherm beginning in the 80 C--90 C range. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF binder. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the SOC (decreasing Li content in the cathode). No thermal reactions were seen at lower temperatures suggesting that thermal runaway reactions in this type of cell are initiated at the anode. An Accelerating Rate Calorimeter (ARC) was used to perform measurements of thermal runaway on commercial Sony Li-ion cells as a function of SOC. The cells showed sustained thermal output as low as 80 C in agreement with the DSC observations of anode materials but the heating rate was strongly dependent on the SOC.

More Details

Seismic analysis of a reinforced concrete containment vessel model

Cherry, Jeffery L.

Pre-and post-test analytical predictions of the dynamic behavior of a 1:10 scale model Reinforced Concrete Containment Vessel are presented. This model, designed and constructed by the Nuclear Power Engineering Corp., was subjected to seismic simulation tests using the high-performance shaking table at the Tadotsu Engineering Laboratory in Japan. A group of tests representing design-level and beyond-design-level ground motions were first conducted to verify design safety margins. These were followed by a series of tests in which progressively larger base motions were applied until structural failure was induced. The analysis was performed by ANATECH Corp. and Sandia National Laboratories for the US Nuclear Regulatory Commission, employing state-of-the-art finite-element software specifically developed for concrete structures. Three-dimensional time-history analyses were performed, first as pre-test blind predictions to evaluate the general capabilities of the analytical methods, and second as post-test validation of the methods and interpretation of the test result. The input data consisted of acceleration time histories for the horizontal, vertical and rotational (rocking) components, as measured by accelerometers mounted on the structure's basemat. The response data consisted of acceleration and displacement records for various points on the structure, as well as time-history records of strain gages mounted on the reinforcement. This paper reports on work in progress and presents pre-test predictions and post-test comparisons to measured data for tests simulating maximum design basis and extreme design basis earthquakes. The pre-test analyses predict the failure earthquake of the test structure to have an energy level in the range of four to five times the energy level of the safe shutdown earthquake. The post-test calculations completed so far show good agreement with measured data.

More Details

A methodology for selecting an optimal experimental design for the computer analysis of a complex system

Technometrics

Rutherford, Brian

Investigation and evaluation of a complex system is often accomplished through the use of performance measures based on system response models. The response models are constructed using computer-generated responses supported where possible by physical test results. The general problem considered is one where resources and system complexity together restrict the number of simulations that can be performed. The levels of input variables used in defining environmental scenarios, initial and boundary conditions and for setting system parameters must be selected in an efficient way. This report describes an algorithmic approach for performing this selection.

More Details

The impact of process parameters on gold elimination from soldered connector assemblies

Assembly Automation

Vianco, Paul T.; Kilgo, Alice C.

Minimizing the likelihood of solder joint embrittlement in connectors is realized by reducing or eliminating retained Au plating and/or Au-Sn intermetallic compound formation from the assemblies. Gold removal is performed most effectively by using a double wicking process. When only a single wicking procedure can be used, a higher soldering temperature improves the process of Au removal from the connector surfaces and to a nominal extent, removal of Au-contaminated solder from the joint. A longer soldering time did not appear to offer any appreciable improvement toward removing the Au-contaminated solder from the joint. Because the wicking procedure was a manual process, it was operator dependent.

More Details

Nonlinear system modeling based on experimental data

Paez, Thomas L.

The canonical variate analysis technique is used in this investigation, along with a data transformation algorithm, to identify a system in a transform space. The transformation algorithm involves the preprocessing of measured excitation/response data with a zero-memory-nonlinear transform, specifically, the Rosenblatt transform. This transform approximately maps the measured excitation and response data from its own space into the space of uncorrelated, standard normal random variates. Following this transform, it is appropriate to model the excitation/response relation as linear since Gaussian inputs excite Gaussian responses in linear structures. The linear model is identified in the transform space using the canonical variate analysis approach, and system responses in the original space are predicted using inverse Rosenblatt transformation. An example is presented.

More Details

Time and length scales within a fire and implications for numerical simulation

Tieszen, Sheldon R.

A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principles solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.

More Details

On the development of a subgrid CFD model for fire extinguishment

Tieszen, Sheldon R.; Black, Amalia R.

A subgrid model is presented for use in CFD fire simulations to account for thermal suppressants and strain. The extinguishment criteria is based on the ratio of a local fluid-mechanics time-scale to a local chemical time-scale compared to an empirically-determined critical Damkohler number. Local extinction occurs if this time scale is exceeded, global fire extinguishment occurs when local extinction has occurred for all combusting cells. The fluid mechanics time scale is based on the Kolmogorov time scale and the chemical time scale is based on blowout of a perfectly stirred reactor. The input to the reactor is based on cell averaged temperatures, assumed stoichiometric fuel/air composition, and cell averaged suppressant concentrations including combustion products. A detailed chemical mechanism is employed. The chemical time-scale is precalculated and mixing rules are used to reduce the composition space that must be parameterized. Comparisons with experimental data for fire extinguishment in a flame-stabilizing, backward-facing step geometry indicates that the model is conservative for this condition.

More Details

Certification of solar products - The Florida experience

Post, Harold N.

Florida legislation enacted in 1976 directed the Florida Solar Energy Center (FSEC) to develop standards for solar energy systems manufactured or sold in the state, establish criteria for testing the performance of solar energy systems, and provide a means to display compliance with approved performance tests for these systems. This mandate has been effectively implemented for both solar domestic water heating and solar pool heating systems. With growing interest and markets for photovoltaic systems, plans are presently being developed to expand the scope of the mandate to include photovoltaic technology. This paper discusses four complementary facets of a photovoltaic (PV) system certification program. They include PV module performance characterization and rating; PV system design review and approval; examination and authorization of photovoltaic system installers; and inspection and acceptance testing of PV system installation. The suggested photovoltaic system process builds on lessons learned from over 20 years of testing, certifying and labeling of solar thermal collectors, and the certification of solar thermal systems.

More Details

Agile dry etching of compound semiconductors for science-based manufacturing using in-situ process control

Ashby, Carol I.H.; Vawter, Gregory A.; Zubrzycki, Walter J.; Breiland, William G.; Bruskas, Larry A.; Woodworth, Joseph R.; Hebner, Gregory A.

In-situ optical diagnostics and ion beam diagnostics for plasma-etch and reactive-ion-beam etch (RIBE) tools have been developed and implemented on etch tools in the Compound Semiconductor Research Laboratory (CSRL). The optical diagnostics provide real-time end-point detection during plasma etching of complex thin-film layered structures that require precision etching to stop on a particular layer in the structure. The Monoetch real-time display and analysis program developed with this LDRD displays raw and filtered reflectance signals that enable an etch system operator to stop an etch at the desired depth within the desired layer. The ion beam diagnostics developed with this LDRD will permit routine analysis of critical ion-beam profile characteristics that determine etch uniformity and reproducibility on the RIBE tool.

More Details

Very large assemblies: Optimizing for automatic generation of assembly sequences

Galpin, Terri

Sandia's Archimedes 3.0{copyright} Automated Assembly Analysis System has been applied successfully to several large industrial and weapon assemblies. These have included Sandia assemblies such as portions of the B61 bomb, and assemblies from external customers such as Cummins Engine Inc., Raytheon (formerly Hughes) Missile Systems and Sikorsky Aircraft. While Archimedes 3.0{copyright} represents the state-of-the-art in automated assembly planning software, applications of the software made prior to the technological advancements presented here showed several limitations of the system, and identified the need for extensive modifications to support practical analysis of assemblies with several hundred to a few thousand parts. It was believed that there was substantial potential for enhancing Archimedes 3.0{copyright} to routinely handle much larger models and/or to handle more modestly sized assemblies more efficiently. Such a mature assembly analysis capability was needed to support routine application to industrial assemblies that overstressed the system, such as full nuclear weapon assemblies or full-scale aerospace or military vehicles.

More Details

Chemical reactions in TEOS/ozone chemical vapor deposition[TetraEthylOrtho Silicate]

Ho, Pauline H.

A reaction mechanism for TEOS/O{sub 3} CVD in a SVG/WJ atmospheric pressure furnace belt reactor has been developed and calibrated with experimental deposition rate data. One-dimensional simulations using this mechanism successfully reproduce the trends observed in a set of 31 experimental runs in a WJ-TEOS999 reactor. Two-dimensional simulations using this mechanism successfully reproduce the average deposition rates for 3 different experimental conditions in a WJ-1500TF reactor, although the deposition profiles predicted by the model are flatter than the experimental static prints.

More Details

Bursting frequency prediction in turbulent boundary layers

Baty, Roy S.

The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

More Details

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

Finger, John T.; Mansure, Arthur J.; Prairie, Michael R.

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

More Details

Final report for the designed synthesis of controlled degradative materials LDRD

Loy, Douglas A.; Ulibarri, Tamara A.; Curro, John G.; Wiemann, Dora K.; Guess, Tommy R.

The main goal of this research was to develop degradable systems either by developing weaklink-containing polymers or identifying commercial polymeric systems which are easily degraded. In both cases, the degradation method involves environmentally friendly chemistries. The weaklinks are easily degradable fragments which are introduced either randomly or regularly in the polymer backbone or as crosslinking sites to make high molecular weight systems via branching. The authors targeted three general application areas: (1) non-lethal deterrents, (2) removable encapsulants, and (3) readily recyclable/environmentally friendly polymers for structural and thin film applications.

More Details

Precision formed micro magnets: LDRD project summary report

Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

More Details

Role of alumina phase and size in tungsten CMP

Stein, David J.

The role of the alumina particle phase and size on polish rate and process temperature was studied to elucidate removal mechanisms involved in tungsten CMP using potassium iodate-based slurries. Additional work including polishing of blanket PETEOS and titanium films, and polishing of M1 to V1 to M2 electrical test structures was performed to determine the performance of the various aluminas in production CMP. The polish rate of tungsten was highest with alpha alumina. Delta/theta and gamma alumina showed lower polish rates. Tungsten and PETEOS polish rates increased with particle size. Only alpha alumina was able to clear the titanium barrier stack. The size of the alpha alumina did not effect the electrical characteristics of short loop electrical test structures.

More Details

Comprehensive testing to measure the response of fluorocarbon rubber (FKM) to Hanford tank waste simulant

Nigrey, Paul J.; Bolton, Dennis L.

This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 Krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Fluorocarbon (FKM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that FKM rubber is not a good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study. They have determined that FKM rubber has limited chemical durability after exposure to gamma radiation followed by exposure to the Hanford tank simulant mixed waste at elevated temperatures above 18 C.

More Details

PDS/PIO: Lightweight libraries for collective parallel I/O

Sturtevant, Judith E.; Heermann, Philip D.; Christon, Mark

PDS/PIO is a lightweight, parallel interface designed to support efficient transfers of massive, grid-based, simulation data among memory, disk, and tape subsystems. The higher-level PDS (Parallel Data Set) interface manages data with tensor and unstructured grid abstractions, while the lower-level PIO (Parallel Input/Output) interface accesses data arrays with arbitrary permutation, and provides communication and collective I/O operations. Higher-level data abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in parallel, functionality of Exodus II, a finite element data model developed at Sandia National Laboratories. The entire interface is implemented in C with Fortran-callable PDS and PXI wrappers.

More Details

Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications

Decker, Merlin K.; Smith, Mark F.

This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

More Details

Characterization of the Li(Si)/CoS(2) couple for a high-voltage, high-power thermal battery

Guidotti, Ronald A.; Reinhardt, Frederick W.

In order to determined the capabilities of a thermal battery with high-voltage and high-power requirements, a detailed characterization of the candidate LiSi/LiCl-LiBr-LiF/CoS{sub 2} electrochemical couple was conducted. The rate capability of this system was investigated using 0.75 inch-dia. and 1.25 inch-dia. single and multiple cells under isothermal conditions, where the cells were regularly pulsed at increasingly higher currents. Limitations of the electronic loads and power supplies necessitated using batteries to obtain the desired maximum current densities possible for this system. Both 1.25 inch-dia. and 3 inch-dia. stacks were used with the number of cells ranging from 5 to 20. Initial tests involved 1.25 inch-dia. cells, where current densities in excess of 15 A/cm{sup 2} (>200 W/cm{sup 2}) were attained with 20-cell batteries during 1-s pulses. In subsequent follow-up tests with 3 inch-dia., 10-cell batteries, ten 400-A 1-s pulses were delivered over an operating period often minutes. These tests formed the foundation for subsequent full-sized battery tests with 125 cells with this chemistry.

More Details

Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest

Aguilar, Richard A.; Dwyer, Stephen F.; Reavis, Bruce A.; Newman, Gretchen C.

Cobble mulch and composted biosolids, greenwaste, and dairy manure were added to arid soil in an attempt to improve plant establishment and production, minimize erosion, increase evapotranspiration, and reduce leaching. Twenty-four plots (10 x 10 m) were established in a completely randomized block design (8 treatments, 3 plots per treatment). Treatments included (1) non-irrigated control, (2) irrigated control, (3) non-irrigated greenwaste compost (2.5 yd{sup 3} per plot), (4) irrigated greenwaste compost (5 yd{sup 3} per plot), (5) non-irrigated biosolids compost (2.5 yd{sup 3} per plot), (6) irrigated biosolids compost (5 yd{sup 3} per plot), (7) cobble-mulch, and (8) non-irrigated dairy manure compost (2.5 yd{sup 3} per plot). Soil samples were collected from each plot for laboratory analyses to assess organic matter contents, macro-nutrient levels and trace metal contents, and nitrogen mineralization potential. All plots were seeded similarly with approximately equal portions of cool and warm season native grasses. The organic composts (greenwaste, biosolids, dairy manure) added to the soils substantially increased soil organic matter and plant nutrients including total nitrogen and phosphorus. However, the results of a laboratory study of the soils' nitrogen mineralization potential after the application of the various composts showed that the soil nitrogen-supplying capability decreased to non-amended soil levels by the start of the second growing season. Thus, from the standpoint of nitrogen fertilizer value, the benefits of the organic compost amendments appear to have been relatively short-lived. The addition of biosolids compost, however, did not produce significant changes in the soils' copper, cadmium, lead, and zinc concentrations and thus did not induce adverse environmental conditions due to excessive heavy metal concentrations. Supplemental irrigation water during the first and second growing seasons did not appear to increase plant biomass production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result was probably due to the cumulative effects of other factors that influenced the initial establishment and production of plants in the plots (e.g., plant species competition, seed germination delay times, differences in nutrient release and availability). Variation within individual plots, and among the three replicate plots associated with each treatment, rendered many of the recorded differences in vegetation establishment and production statistically insignificant. However, after two complete growing seasons the highest total plant foliar cover and the greatest biomass production and plant species diversity occurred in the cobble-mulched plots. These results suggest that cobble-mulch may be the desired amendment in re-vegetated arid landfill covers if the principal objectives are to quickly establish vegetation cover, stabilize the site from erosion, and increase water usage by plants, thereby reducing the potential for leaching and contaminant movement from the landfill's waste-bearing zone.

More Details

Final state of the Strategic Petroleum Reserve (SPR) Weeks Island Mine

Molecke, Martin A.

This report documents the decommissioning and abandonment activities at the Weeks Island Strategic Petroleum Reserve (SPR) site, Iberia Parish, Louisiana, that were concluded in 1999. These activities required about six years of intense operational, engineering, geotechnical, and management support efforts, following initiation of site abandonment plans in 1994. The Weeks Island SPR mine stored about 72.5 million bbl of crude oil following oil fill in 1980--1982, until November 1995, when the DOE initiated oil drawdown procedures, with brine refill and oil skimming, and numerous plugging and sealing activities. About 98% of the crude oil was recovered and transferred to other SPR facilities in Louisiana and Texas; a small amount was also sold. This document summarizes recent pre- and post-closure: conditions of surface features at the site, including the sinkholes, the freeze wall, surface subsidence measurements and predictions; conditions within the SPR mine, including oil recovery, brine filling, and the Markel Wet Drift; risk assessment evaluations relevant to the decommissioning and long-term potential environmental impacts; continuing environmental monitoring activities at the site; and, an overview on the background and history of the Weeks Island SPR facility.

More Details
Results 91351–91400 of 99,299
Results 91351–91400 of 99,299