Publications

5 Results

Search results

Jump to search filters

Advanced mobile networking, sensing, and controls

Feddema, John T.; Byrne, Raymond H.; Lewis, Christopher L.; Harrington, John J.; Kilman, Dominique K.; Van Leeuwen, Brian P.; Robinett, R.D.

This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

More Details

Cooperative sentry vehicles and differential GPS leapfrog

Feddema, John T.; Lewis, Christopher L.; Lafarge, Robert A.

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

More Details

Prospecting for lunar ice using a multi-rover cooperative team

Klarer, Paul R.; Feddema, John T.; Lewis, Christopher L.

A multi-rover cooperative team or swarm developed by Sandia National Laboratories is described, including various control methodologies that have been implemented to date. How the swarm's capabilities could be applied to a lunar ice prospecting mission is briefly explored. Some of the specific major engineering issues that must be addressed to successfully implement the swarm approach to a lunar surface mission are outlined, and potential solutions are proposed.

More Details

Intelligent tools and process development for robotic edge finishing: LDRD project final report

Lewis, Christopher L.

This report describes a project undertaken to develop an agile automated, high-precision edge finishing system, for fabricating precision parts. The project involved re-designing and adding additional capabilities to an existing finishing work-cell. The resulting work-cell may serve as prototype for production systems to be integrated in highly flexible automated production lines. The system removes burrs formed in the machining process and produces precision chamfers. The system uses an expert system to predict the burr size from the machining history. Within the CAD system, tool paths are generated for burr removal and chamfer formation. Then, the optimal grinding process is automatically selected from a database of processes. The tool trajectory and the selected process definition is then downloaded to a robotic control system to execute the operation. The robotic control system implements a hybrid fuzzy logic-classical control scheme to achieve the desired performance goals regardless of tolerance and fixturing errors. This report describes the system architecture and the system`s performance.

More Details

Trajectory generation for two robots cooperating to perform a task

Lewis, Christopher L.

This paper formulates an algorithm for trajectory generation for two robots cooperating to perform an assembly task. Treating the two robots as a single redundant system, this paper derives two Jacobian matrices which relate the joint rates of the entire system to the relative motion of the grippers with respect to one another. The advantage of this formulation over existing methods is that a variety of secondary criteria can be conveniently satisfied using motion in the null-space of the relative Jacobian. This paper presents methods for generating dual-arm joint trajectories which perform assembly tasks while at the same time avoiding obstacles and joint limits, and also maintaining constraints on the absolute position and orientation of the end-effectors.

More Details
5 Results
5 Results