Publications

Results 94001–94100 of 99,299

Search results

Jump to search filters

Anomalous normal mode oscillations in semiconductor microcavities

Hou, Hong Q.

Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

More Details

Stimulated emission from semiconductor microcavities

Hou, Hong Q.

Laser-like emissions from semiconductor microcavities at low temperature have attracted considerable attention recently because of the possibility of realizing a non-equilibrium condensate by using cavity-polaritons. In this paper the authors present experimental studies of optical properties of a microcavity near the lasing threshold. They show that the minimum lasing threshold is achieved when the cavity is tuned significantly below the exciton line center. By comparing emission spectra with reflectivity spectra, they also show that well-resolved doublet in the emission spectra near the lasing threshold are not associated with cavity-polaritons. These results suggest that laser-like emissions form the microcavity are due to conventional stimulated emission processes with exciton localization playing a significant role.

More Details

Nanocavity effects on misfit accommodation in semiconductors

Myers, S.M.; Follstaedt, D.M.; Floro, J.A.; Lee, S.R.; Dawson, L.R.; Reno, J.L.

The authors report an experimental and theoretical examination of the interaction of dislocations with microscopic cavities in semiconductors and the consequences for strain relaxation in heteroepitaxial structures. Dislocation-mediated relaxation and control of the resulting defect microstructure is central to the exploitation of such heterostructures in devices, and they demonstrate here that the introduction of nanometer-scale voids provides a means of strongly influencing this microstructural evolution. Methods for nanocavity formation using He ion implantation and annealing were developed for Si, SiGe on Si, GaAs, and InGaAs on GaAs. In detailed microstructural studies of SiGe on Si, cavities in the interfacial zone were shown to bind dislocations strongly. This effect reduced the excursion of dislocations into the nearby matrix, although threads into the SiGe overlayer were not eliminated. Interfacial cavities also increased the rate of stress relaxation by more than an order of magnitude as a result of enhanced nucleation of misfit dislocations. Further, in the presence of such cavities, the development of thickness variations in the overlayer during relaxation was suppressed. A theoretical model was developed to describe semiquantitatively the forces on dislocations arising from the combined influences of cavities, misfit strain, and the external surface. Predictions of this model are in accord with microstructural observations.

More Details

Automatic planning and programming for robotic construction of planetary/lunar structures

Harrigan, Raymond W.

Many difficult material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost-effective alternative to this approach is the use of intelligent robotic systems for the excavation, handling, transport and manipulation of materials during remote construction operations. A robotic system designed for these tasks has been developed at Sandia National Laboratories which successfully integrates computer controlled manipulation and mobility to deliver these needed robotic capabilities in remote applications such as planetary operations. The mobile robot, RETRVIR, incorporates advanced developments in the integration of sensors, advanced computing environments, and graphical user interfaces. The addition of these elements in the control of remotely operated equipment have shown great promise for reducing the cost of remote construction while providing faster and safer operations.

More Details

A two-dimensional fast solver for arbitrary vortex distributions

Strickland, James H.

A method which is capable of an efficient calculation of the two-dimensional stream function and velocity field produced by a large system of vortices is presented in this report. This work is based on the adaptive scheme of Carrier, Greengard, and Rokhlin with the added feature that the evaluation or target points do not have to coincide with the location of the source or vortex positions. A simple algorithm based on numerical experiments has been developed to optimize the method for cases where the number of vortices N{sub V} differs significantly from the number of target points N{sub T}. The ability to specify separate source and target fields provides an efficient means for calculating boundary conditions, trajectories of passive scalar quantities, and stream-function plots, etc. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. For six terms in the series expansions, non-dimensional truncation errors for the magnitudes of the complex potential and velocity fields are on the order of 10{sup {minus}5} and 10{sup {minus}3} respectively. The authors found that the CPU time scales as {radical}(N{sub V}N{sub T}) for N{sub V}/N{sub T} in the range of 0.1 to 10. For {radical}(N{sub V}N{sub T}) less than 200, there is virtually no CPU time savings while for {radical}N{sub V}N{sub T} roughly equal to 20,000, the fast solver obtains solutions in about 1% of the time required for the direct solution technique depending somewhat upon the configuration of the vortex field and the target field.

More Details

Novel thin film field emission electron source laboratory directed research and development final report

Walko, R.J.

The objective of this project was to demonstrate proof of concept of a thin film field emission electron source based on electron tunneling between discrete metal islands on an insulating substrate. An electron source of this type should be more easily fabricated permitting the use of a wider range of materials, and be less prone to damage and erratic behavior than the patterned field emitter arrays currently under development for flat panel displays and other vacuum microelectronic applications. This report describes the results of the studies of electron and light emission from such structures, and the subsequent discovery of a source of light emission from conductive paths across thin insulating gaps of the semiconductor-insulator-semiconductor (SIS) and metal-insulator-semiconductor (MIS) structures. The substrates consisted of silicon nitride and silicon dioxide on silicon wafers, Kapton{reg_sign}, quartz, and cut slabs of silica aerogels. The conductive film samples were prepared by chemical vapor deposition (CVD) and sputtering, while the MIS and SIS samples were prepared by CVD followed by cleaving, grinding, mechanical indentation, erosion by a sputter Auger beam, electrical arcing and chemical etching. Electron emission measurements were conducted in high and ultra high vacuum systems at SNL, NM as well as at SNL, CA. Optical emission measurements were made in air under an optical microscope as well as in the above vacuum environments. Sample morphology was investigated using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

More Details

Massively parallel I/O: Building an infrastructure for parallel computing

Womble, David E.

The solution of Grand Challenge Problems will require computations that are too large to fit in the memories of even the largest machines. Inevitably, new designs of I/O systems will be necessary to support them. This report describes the work in investigating I/O subsystems for massively parallel computers. Specifically, the authors investigated out-of-core algorithms for common scientific calculations present several theoretical results. They also describe several approaches to parallel I/O, including partitioned secondary storage and choreographed I/O, and the implications of each to massively parallel computing.

More Details

The effects of mobile ATM switches on PNNI peer group operation

Sholander, Peter E.

This contribution discusses why, and how, mobile networks and mobile switches might be discussed during Phase 1 of the WATM standards process. Next, it reviews mobile routers within Mobile IP. That IP mobility architecture may not apply to the proposed mobile ATM switches. Finally, it discusses problems with PNNI peer group formation and operation when mobile ATM switches are present.

More Details

Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

Miller, James E.

Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

More Details

Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

Mazarakis, Michael G.

This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.

More Details

Artificial awareness for robots using artificial neural nets to monitor robotic workcells

Ray, Lawrence P.

Current robotic systems are unable to recognize most unexpected changes in the work environment, such as tool breakage, workpiece motion, or sensor failure. Unless halted by a human operator, they are likely to continue actions that are at best inappropriate, and at worst may cause damage to the workpiece or robot. This project investigated use of Artificial Neural Networks (ANNs) to learn the expected characteristics of sensor data during normal operations, recognize when data no longer is consistent with normal operation, suspend operations and alert a human operator. Data on force and torque applied at the robot tool tip were collected from two workcells: a robotic deburring system and a robot material-handling system. Data were collected for normal operations and for operations in which a fault condition was introduced. Data simulating sensor failure and excessive sensor noise were generated. Artificial Neural Networks (ANN) were trained to classify operating conditions; several ANN architectures were tested. The selected ANNs were able to correctly classify all valid operating conditions and the majority of fault conditions over the entire range of operating conditions, having {open_quotes}learned{close_quotes} the expected force/torque data. Most faults introduced appreciable error in the data; these were correctly classified. However, a small minority of faults did not give rise to a detectable difference in force and torque data. It is believed that these faults could be detected using other sensors. The computational workload varies with the implementation, but is moderate: up to 2.3 megaflops. This makes implementation of a real-time workcell monitor feasible.

More Details

Pyroshock simulation for satellite components using a tunable resonant fixture - phase 2

Davie, Neil T.

Aerospace components are often subjected to pyroshock events during flight and deployment, and must be qualified to this frequently severe environment. Laboratory simulation of pyroshock using a mechanically excited resonant fixture, has gained favor at Sandia for testing small (<8 inch cube) weapon components. With this method, each different shock environment required a different resonant fixture that was designed such that it`s response matched the environment. In Phase 1 (SAND92-2135) of this research, a new test method was developed which eliminated the need to have a different resonant fixture for each test requirement. This was accomplished by means of a tunable resonant fixture that has a response which is adjustable over a wide frequency range. The adjustment of the fixture`s response is done in a simple and deterministic way. This report covers Phase 2 of this research, in which several ideas were explored to extend the Phase 1 results to a larger scale. The test apparatus developed in Phase 1 was capable of testing components with up to a 10 inches x 10 inches base. The goal of the Phase 2 research was to produce an apparatus capable of testing components with up to a 20 inches x 20 inches mounting base. This size capability would allow the testing of most satellite and missile components which frequently consist of large electronic boxes. Several methods to attain this goal were examined, including scaling up the Phase 1 apparatus. Only one of these proved capable of meeting the Phase 2 goals. This report covers all details from concept through fabrication and testing of this Phase 2 apparatus.

More Details

Structural system identification: Structural dynamics model validation

Red-Horse, John R.

Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

More Details

RELFIT: A program for determining prony series fits to measured relaxation data

Chambers, Robert S.

Viscoelastic materials are often characterized in terms of stress relaxation moduli which decay in time. Finite element programs which model viscoelastic materials frequently require that these relaxation functions be defined as an exponential series (i.e., Prony Series) to exploit the numerical advantages of developing recursive equations for evaluating hereditary integrals. Obtaining these data fits can be extremely difficult when the data is spread over many decades in the logarithm of time. RELFIT is a nonlinear optimization program that iteratively determines the Prony series coefficients and relaxation times so as to minimize the least squares error in the data fit. An overview of the code, a description of the required inputs (i.e., users`s instructions), and a demonstration problem are presented.

More Details

Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

Fritz, Ian J.

This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

More Details

Electromagnetic imaging of a fuel oil spill at Sandia/CA

Bartel, Lewis C.

The multifrequency, multisource integral wave migration method commonly used in the analysis of seismic data is extended to electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The integral wave-migration method is a numerical reconstruction procedure utilizing Green`s theorem where the fields are migrated (extrapolated) from the measuring aperture into the interior of the earth. To form the image, the approach used here is to Fourier transform the constructed image from frequency domain to time domain and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; ie., the EM wave is phase coherent at its origination. In the application here, the secondary magnetic fields are treated as scattered fields. To determine the conductivity, the measured data migrated to a pixel location are equated to calculated data migrated to the same pixel. The conductivity is determined from solving a Fredholm integral equation of the first kind by solving a system of linear algebraic equations. The multifrequency, multisource integral wave-migration method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill. For the application discussed here, a two dimensional resistivity slice is calculated from the solution to the Fredholm integral equation. The resistivity image of the fuel oil agrees with the known location.

More Details

Fuel cell applications for novel metalloporphyrin catalysts

Ryba, G.

This project utilized Computer-Aided Molecular Design (CAMD) to develop a new class of metalloporphyrin materials for use as catalysts for two fuel cell reactions. The first reaction is the reduction of oxygen at the fuel cell cathode, and this reaction was the main focus of the research. The second reaction we attempted to catalyze was the oxidation of methanol at the anode. Two classes of novel metalloporphyrins were developed. The first class comprised the dodecaphenylporphyrins whose steric bulk forces them into a non-planar geometry having a pocket where oxygen or methanol is more tightly bound to the porphyrin than it is in the case of planar porphyrins. Significant improvements in the catalytic reduction of oxygen by the dodecaphenyl porphyrins were measured in electrochemical cells. The dodecaphenylporphyrins were further modified by fluorinating the peripheral phenyl groups to varying degrees. The fluorination strongly affected their redox potential, but no effect on their catalytic activity towards oxygen was observed. The second class of porphyrin catalysts was a series of hydrogen-bonding porphyrins whose interaction with oxygen is enhanced. Enhancements in the interaction of oxygen with the porphyrins having hydrogen bonding groups were observed spectroscopically. Computer modeling was performed using Molecular Simulations new CERIUS2 Version 1.6 and a research version of POLYGRAF from Bill Goddard`s research group at the California Institute of Technology. We reoptimized the force field because of an error that was in POLYGRAF and corrected a problem in treatment of the metal in early versions of the program. This improved force field was reported in a J. Am. Chem. Soc. manuscript. Experimental measurements made on the newly developed catalysts included the electrochemical testing in a fuel cell configuration and spectroscopic measurements (UV-Vis, Raman and XPS) to characterize the catalysts.

More Details

Development of a magnetostrictive borehole seismic source

Cutler, Robert P.

A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

More Details

Fiber optic communication in borehole applications

Franco, R.J.

The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

More Details

LDRD final report on carbon nanotube composites

Cahill, P.A.; Rand, P.B.

Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

More Details

Introduction to technology roadmapping: The semiconductor industry association`s technology roadmapping process

Garcia, Marie L.

A technology roadmap is the result of a strategic technology planning process that cooperatively identifies (1) a particular industry`s common product and process performance targets, (2) the technology alternatives and milestones for meeting these targets, and (3) a common technology path for research and development activities. The author describes a successful major roadmapping experience - the Semiconductor Industry Association`s Technology Roadmapping Process, which culminated in a workshop held in 1992. The report explains the committee structure and processes that were used both before and after the workshop and presents principles and practices that can aid future technology roadmappers. Appendix 1 summarizes the process from a committee-structure viewpoint. Appendix 2 summarizes the process from a functional view-point. Appendix 3 answers some frequently asked questions about technology roadmapping.

More Details

A 3-axis force balanced accelerometer using a single proof-mass

Lemkin, M.A.; Boser, B.E.; Auslander, D.; Smith, J.

This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

More Details

Rapid world modelling from a mobile platform

Little, Charles Q.

The ability to successfully use and interact with a computerized world model is dependent on the ability to create an accurate world model. The goal of this project was to develop a prototype system to remotely deploy sensors into a workspace, collect surface information, and rapidly build an accurate world model of that workspace. A key consideration was that the workspace areas are typically hazardous environments, where it is difficult or impossible for humans to enter. Therefore, the system needed to be fully remote, with no external connections. To accomplish this goal, an electric, mobile platform with battery power sufficient for both the platform and sensor electronics was procured and 3D range sensors were deployed on the platform to capture surface data within the workspace. A radio Ethernet connection was used to provide communications to the vehicle and all on-board electronics. Video from on-board cameras was also transmitted to the base station and used to teleoperate the vehicle. Range data generated by the on-board 3D sensors was transformed into surface maps, or models. Registering the sensor location to a consistent reference frame as the platform moved through the workspace allowed construction of a detailed 3D world model of the extended workspace.

More Details

Fundamentals of technology roadmapping

Bray, Olin H.

Technology planning is important for many reasons. Globally, companies are facing many competitive problems. Technology roadmapping, a form of technology planning can help deal with this increasingly competitive environment. While it has been used by some companies and industries, the focus has always been on the technology roadmap as a product, not on the process. This report focuses on formalizing the process so that it can be more broadly and easily used. As a DOE national security laboratory with R&D as a major product, Sandia must do effective technology planning to identify and develop the technologies required to meet its national security mission. Once identified, technology enhancements or new technologies may be developed internally or collaboratively with external partners. For either approach, technology roadmapping, as described in this report, is an effective tool for technology planning and coordination, which fits within a broader set of planning activities. This report, the second in a series on technology roadmapping, develops and documents this technology roadmapping process, which can be used by Sandia, other national labs, universities, and industry. The main benefit of technology roadmapping is that it provides information to make better technology investment decisions by identifying critical technologies and technology gaps and identifying ways to leverage R&D investments. It can also be used as a marketing tool. Technology roadmapping is critical when the technology investment decision is not straight forward. This occurs when it is not clear which alternative to pursue, how quickly the technology is needed, or when there is a need to coordinate the development of multiple technologies. The technology roadmapping process consists of three phases - preliminary activity, development of the technology roadmap, and follow-up activity.

More Details

Dual axis operation of a micromachined rate gyroscope

Juneau, T.; Pisano, A.P.; Smith, J.

Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance better than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.

More Details

Sandia`s network for Supercomputer `96: Linking supercomputers in a wide area Asynchronous Transfer Mode (ATM) network

Vahle, Michael O.

The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At Supercomputing 96, for the first time, Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory combined their Supercomputing 96 activities within a single research booth under the ASO banner. Sandia provided the network design and coordinated the networking activities within the booth. At Supercomputing 96, Sandia elected: to demonstrate wide area network connected Massively Parallel Processors, to demonstrate the functionality and capability of Sandia`s new edge architecture, to demonstrate inter-continental collaboration tools, and to demonstrate ATM video capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.

More Details

Comparison of Ross` capillary barrier diversion formula with detailed numerical simulations

Webb, Stephen W.

Ross developed an analytical relationship to calculate the diversion length of a tilted fine-over-coarse capillary barrier. Oldenburg and Pruess compared simulation results using upstream and harmonic weighting to the diversion length predicted by Ross formula with mixed results; the qualitative agreement is reasonable but the quantitative comparison is poor, especially for upstream weighting. The proximity of the water table to the fine-coarse interface at breakthrough is a possible reason for the poor agreement. In the present study, the Oldenburg and Pruess problem is extended to address the water table issue. When the water table is sufficiently far away from the interface at breakthrough, good qualitative and quantitative agreement is obtained using upstream weighting.

More Details

Fractal funcitons and multiwavelets

Massopust, P.R.

This paper reviews how elements from the theory of fractal functions are employed to construct scaling vectors and multiwavelets. Emphasis is placed on the one-dimensional case, however extensions to IR{sup m} are indicated.

More Details

Disposable fiber optics telemetry for measuring while drilling

Holcomb, David J.

The project addressed the need of the oil and gas industry for real-time information about the drilling process and the formations being drilled. An ideal system would allow measuring while drilling (MWD) and would transmit data to the surface immediately at a rate high enough to support video or televiewer systems. A proposed solution was to use an optical fiber as a link between the surface and the instrumentation package. We explored the use of a disposable MWD telemetry cable, drawing on the technology developed for missile guidance which deploys miles of fiber from a small spool at missile speeds approaching half the speed of sound. Emphasis In was on the questions of survivability of the unarmored fiber in the drill string environment and deployability. Laboratory and field testing showed the concept worked under realistic conditions; a field demonstration transmitted data at 10 kilobits per second from a depth of 3500 feet.

More Details

Development of a surface-specific, anti-weathering stone preservative treatment

Brinker, C.J.

We are testing an anti-weathering preservation strategy that is specific to limestone surfaces. The strategy involves the application of a mineral-specific, bifunctional, passivating/coupling agent that binds to both the limestone surface and to the consolidating inorganic polymer matrix. The sol-gel based reactions form composite materials with desirable conservation and anti-weathering properties. We present the results of our efforts, the highlights of which are: (1) scanning probe microscopy of moisture-free calcite crystals treated with the trisilanol form of silylalkylaminocarboxylate (SAAC), reveals porous agglomerates that offer no significant resistance to the mild leaching action of deionized water. When the crystals are further consolidated with a silica-based consolidant (A2**), no dissolution is seen although the positive role of the passivant molecule is not yet delineated. (2) Modulus of rupture tests on limestone cores treated with an aminoalkylsilane (AEAPS) and A2** showed a 25-35% increase in strength compared to the untreated samples. (3) Environmental scanning electron microscopy of treated limestone subjected to a concentrated acid attack showed degradation of the surface except in areas where thick layers of the consolidant were deposited.

More Details

Geothermal drilling technology update

Glowka, D.A.

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

More Details

Study of electrokinetic effects to quantify groundwater flow

Brown, S.R.

An experimental study of electrokinetic effects (streaming potential) in earth materials was undertaken. The objective was to evaluate the measurement of electrokinetic effects as a method of monitoring and predicting the movement of groundwater, contaminant plumes, and other fluids in the subsurface. The laboratory experiments verified that the electrokinetic effects in earth materials are prominent, repeatable, and can be described well to first order by a pair of coupled differential equations.

More Details

Optics and photonics research in the Lasers, Optics and Remote Sensing Department at Sandia National Laboratories

Simmons-Potter, Kelly

Photonic system and device technologies have claimed a significant share of the current high-tech market. In particular, laser systems and optical devices impact a broad range of technological areas including telecommunications, optical computing, optical data storage, integrated photonics, remote environmental sensing and biomedical applications. Below we present an overview of photonics research being conducted within the Lasers, Optics and Remote Sensing department of the Physical and Chemical Sciences Center at Sandia National Laboratories. Recent results in the fields of photosensitive materials and devices, binary optics device applications, wavelength generation using optical parametric oscillators, and remote sensing are highlighted. 11 refs., 6 figs.

More Details

Electrical characterization and application of very high speed vertical cavity surface emitting lasers (VCSELs)

Hietala, Vincent M.

Vertical Cavity Surface Emitting Lasers (VCSELs) offer many benefits over conventional edge-emitting lasers including economical microelectronic batch processing, easy extension to 2-D arrays, and of interest here, very large intrinsic bandwidths due to reduced cavity volume. Results of electrical characterization of a 19 GHz bandwidth 850 nm VCSEL are presented. Small-signal characterization and modeling of the frequency response and device impedance is presented. Large signal performance is studied using two-tone RF and high-speed digital measurements. Appropriate drive conditions for high-speed digital applications are demonstrated.

More Details

Multiple wavelength vertical-cavity surface-emitting laser arrays using surface-controlled MOCVD growth rate enhancement and reduction

Hou, Hong Q.

Multiple-wavelength VCSEL and photodetector arrays are useful for wavelength-multiplexed fiberoptic networks, and for optical crosstalk isolation in parallel, free-space interconnects. Multiple wavelength VCSEL arrays have been obtained by varying the growth rate using thermal gradients caused by a backside-patterned substrate, by growth enhancement on a patterned substrate, and by varying the cavity length through anodic oxidation and selective etching of the wafer. We show here for the first time both the enhancement and the reduction of the growth rate of the entire VCSEL structure on a topographically patterned substrate, and demonstrate the controlled variation of the lasing wavelengths of a VCSEL array over an extended spectral range.

More Details

Prediction of tilted capillary barrier performance

Webb, Stephen W.

Capillary barriers, consisting of tilted fine-over-coarse layers under unsaturated conditions, have been suggested as landfill covers to divert water infiltration away from sensitive underground regions, especially for arid and semi-arid regions. The Hydrological Evaluation of Landfill Performance (HELP) computer code is an evaluation tool for landfill covers used by designers and regulators. HELP is a quasi-two-dimensional model that predicts moisture movement into and through the underground soil and waste layers. Processes modeled within HELP include precipitation, runoff, evapotranspiration, unsaturated vertical drainage, saturated lateral drainage, and leakage through liners. Unfortunately, multidimensional unsaturated flow phenomena that are necessary for evaluating tilted capillary barriers are not included in HELP. Differences between the predictions of the HELP and those from a multidimensional unsaturated flow code are presented to assess the two different approaches. Comparisons are presented for the landfill covers including capillary barrier configurations at the Alternative Landfill Cover Demonstration (ALCD) being conducted at Sandia.

More Details

Computer simulation of solder joint failure

Burchett, Steven N.

The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.

More Details

Addressing environmental justice under the National Environment Policy Act at Sandia National Laboratories/New Mexico

Cohen, Timothy M.

Under Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, the Department of Energy (DOE) and Sandia National Laboratories New Mexico (SNL) are required to identify and address, as appropriate, disproportionately high, adverse human health or environmental effects of their activities on minority and low-income populations. The National Environmental Policy Act (NEPA) also requires that environmental justice issues be identified and addressed. This presents a challenge for SNL because it is located in a culturally diverse area. Successfully addressing potential impacts is contingent upon accurately identifying them through objective analysis of demographic information. However, an effective public participation process, which is necessarily subjective, is also needed to understand the subtle nuances of diverse populations that can contribute to a potential impact, yet are not always accounted for in a strict demographic profile. Typically, there is little or no coordination between these two disparate processes. This report proposes a five-step method for reconciling these processes and uses a hypothetical case study to illustrate the method. A demographic analysis and community profile of the population within 50 miles of SNL were developed to support the environmental justice analysis process and enhance SNL`s NEPA and public involvement programs. This report focuses on developing a methodology for identifying potentially impacted populations. Environmental justice issues related to worker exposures associated with SNL activities will be addressed in a separate report.

More Details

An integrated computer modeling environment for regional land use, air quality, and transportation planning

Hanley, Charles

The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menu-driven query system is utilized to review link-based results and regional and area-wide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future projections. 16 refs., 3 figs., 2 tabs.

More Details

Electron transport in coupled double quantum wells and wires

Simmons, Jerry A.

Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of electronic freedom in the growth direction, giving rise to new transport phenomena not found in single electron layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting transport effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.

More Details

Assessment of microelectronics packaging for high temperature, high reliability applications

Uribe, Fernando U.

This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

More Details

Inorganic membrane reactor technology CRADA {number_sign}1176; Final report and assessment of membrane technology

Schwartz, R.W.

This project focused on the fabrication and evaluation of supported inorganic membranes for hydrogen and oxygen separation in petrochemical processes. A variety of fabrication techniques, including CVD (Chemical Vapor Deposition), electroless plating, solution deposition and conventional ceramic processing methods were used for membrane fabrication. For the oxygen separation membrane materials studied, the high surface roughness of the commercially available (and chemically compatible) MgO supports for high flux oxygen materials (SrCo{sub 0.5}FeO{sub x} and SrCo{sub 0.8}Fe{sub 0.2}O{sub x}) hindered the development of supported membranes of these materials. More encouraging results were obtained for the supported hydrogen separation membranes. Both dense palladium (prepared by CVD and electroless plating) and ultramicroporous silica (prepared by solution deposition) membranes were fabricated onto porous alumina supports. Gas separation characteristics and reactor performance of the membranes were both studied. Of the two classes of membranes, when incorporated into a membrane reactor the silica membranes demonstrated the best performance. Propane and isobutane dehydrogenation processes were studied and the silica membrane reactors displayed modest improvements in performance compared to the conventional reactors. In propane dehydrogenation, an increase in propylene yield of 34% was obtained with the membrane reactor (compared to the conventional reactor); in isobutane dehydrogenation, an increase in isobutylene yield of 40% at 525 C was obtained. However, these performance gains decreased somewhat with time on stream, due to membrane instability. Further improvements in membrane stability and permselectivity, as well as catalyst stability are needed before membrane reactors can be considered as a realistic alternative to the existing conventional technology.

More Details

Modeling brine inflow to Room Q: A numerical investigation of flow mechanisms

Christian-Frear, T.L.

A hydrologic modeling study was performed to gain insight into the flow mechanisms around Room Q. A summary of hydrologic and structural data and of predictive fluid flow models from Room Q are provided. Six years of measured data are available from the time of excavation. No brine accumulation in Room Q was measured in the first two years following excavation. However, there is considerable uncertainty associated with this early-time data due to inadequate sealing of the room. Brine may have been lost to evaporation or it may have flowed into newly created disturbed rock zone (DRZ) porosity resulting from excavation. Non-zero brine accumulation rates were measured from 2--5 years, but brine accumulation within the room dropped to zero after 5.5 years. A conceptual model for brine inflow to Room Q was developed which assumes far-field Darcy flow combined with an increasing DRZ pore volume. Numerical simulations employed TOUGH28W and used predictive DRZ porosity increase with time from SPECTROM-32 rock deformation simulations. Simulated brine inflow showed good agreement with measured brine accumulation rates for the first five years. Two important conclusions were drawn from the simulation results: (1) early-time brine inflow to the room can be reduced to zero if the DRZ pore volume increases with time, and (2) brine accumulation (inflow) rates from 2 to 5 years suggest a far-field permeability of 5 {times} 10{sup {minus}22} m{sup 2} with a bulk rock compressibility of 5.4 {times} 10{sup {minus}12} Pa{sup {minus}1}.

More Details

Development of a subsurface gas flow probe

Ballard, Sanford

This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were made to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.

More Details

Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

Thornberg, Steve M.

Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

More Details

Confidence building on the Korean Peninsula: A conceptual development for the cooperative monitoring of limited-force deployment zones

Vannoni, Michael

Confidence building measures (CBMs), particularly military ones, that address the security needs of North and South Korea could decrease the risk of conflict on the Korean Peninsula and help create an environment in which to negotiate a peace regime. The Korea Institute for Defense Analyses (KIDA) and the Cooperative Monitoring Center (CMC) of Sandia National Laboratories collaborated to identify potential CBMs and define associated monitoring. The project is a conceptual analysis of political and technical options for confidence building that might be feasible in Korea at some future time. KIDA first analyzed current security conditions and options for CBMs. Their conclusions are presented as a hypothetical agreement to strengthen the Armistice Agreement by establishing Limited Force Deployment Zones along the Military Demarcation Line. The goal of the hypothetical agreement is to increase mutual security and build confidence. The CMC then used KIDA`s scenario to develop a strategy for cooperative monitoring the agreement. Cooperative monitoring is the collecting, analyzing and sharing of agreed information among parties to an agreement and typically relies on the use of commercially available technology. A cooperative monitoring regime must be consistent with the agreement`s terms; the geographic, logistic, military, and political factors in the Korean setting; and the capabilities of monitoring technologies. This report describes the security situation on the Korean peninsula, relevant precedents from other regions, the hypothetical agreement for reducing military tensions, a monitoring strategy for the hypothetical Korean agreement, examples of implementation, and a description of applicable monitoring technologies and procedures.

More Details

Testing in support of transportation of residues in the pipe overpack container

Ammerman, Douglas

The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plants call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The tests described here were performed to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II. Using a more robust container will assure the fissile materials in each container can not be mixed with the fissile material from the other containers and will provide criticality control. This will allow an increase in the payload of the TRUPACT-II from 325 fissile gram equivalents to 2,800 fissile gram equivalents.

More Details

Precursors to potential severe core damage accidents. A status report, 1982--1983

Forester, John A.

This study is a continuation of earlier work that evaluated 1969-1981 and 1984-1994 events affecting commercial light-water reactors. One-hundred nine operational events that affected 51 reactors during 1982 and 1983 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10{sup {minus}6}. These events were identified by first computer screening the 1982-83 licensee event reports from commercial light-water reactors to select events that could be precursors to core damage. Candidates underwent engineering evaluation that identified, analyzed, and documented the precursors. This report discusses the general rationale for the study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events.

More Details

A new and superior ultrafine cementitious grout

Ahrens, E.H.

Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer.

More Details

Three dimensional visualization to support command and control

Van Slambrook, G.A.

Virtual reality concepts are changing the way one thinks about and with computers. The concepts have already proven their potential usefulness in a broad range of applications. This research was concerned with exploring and demonstrating the utility of virtual reality in robotics and satellite command and control applications. The robotics work addressed the need to quickly build accurate graphical models of physical environments by allowing a user to interactively build a model of a remote environment by superimposing stereo graphics onto live stereo video. The satellite work addressed the fusion of multiple data sets or models into one synergistic display for more effective training, design, and command and control of satellite systems.

More Details

Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

Waters, Robert D.

The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

More Details

Instrumentation and testing of a prestressed concrete containment vessel model

Hessheimer, Michael F.

Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs.

More Details

Testing of a steel containment vessel model

Luk, Vincent K.

A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs.

More Details

Preliminary results of steel containment vessel model test

Luk, Vincent K.

A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.

More Details

Characterization of septic and drain system releases at Sandia National Laboratories, New Mexico

Galloway, R.B.

Sandia National Laboratories/New Mexico (SNL/NM) is located in Albuquerque, New Mexico. The SNL/NM Environmental Restoration (ER) Project is tasked with performing the assessment and remediation of environmental releases resulting from the almost 50 years of engineering development and testing activities. Operable Unit 1295, Septic Tanks and Drainfields, includes inactive septic and drain systems at 23 separate ER sites that were listed as Solid Waste Management Units (SWMUs) in the SNL/NM Resource Conservation and Recovery Act (RCRA) Hazardous and Solid Waste Amendments (HSWA) Module Permit. These sites were identified, based on process histories and interviews with facility personnel, as the subset of all SNL/NM septic and drain systems that had the highest potential for releases of hazardous and radioactive wastes into the environment. An additional 101 septic and drain systems not currently classified as SWMUs also have been identified as needing future characterization.

More Details

The effect of algorithm-agile encryption on ATM quality of service

Sholander, Peter E.

Asynchronous Transfer Mode (ATM) users often open multiple ATM Virtual Circuits (VCs) to multiple ATM users on multiple ATM networks. Each network and user may implement a different encryption policy. Hence ATM users may need shared, flexible hardware-based 3encryption that supports multiple encryption algorithms for multiple concurrent ATM users and VCs. An algorithm-agile encryption architecture, that uses multiple, parallel encryption-pipelines, is proposed. That algorithm-agile encryptor`s effect on the ATM Quality of Service (QoS) metrics, such as Cell Transfer Delay (CTD) and Cell Delay Variation (CDV), is analyzed. Bounds on the maximum CDV and the CDV`s probability density are derived.

More Details

A top-down approach to high-consequence fault analysis for software systems

Fronczak, E.

Even if software code is fault-free, hardware failures can alter a value in memory, possibly where the code itself is stored, causing a computer system to reach an unacceptable state. Microprocessor systems are used to perform many safety and security functions where a design goal is to eliminate single-point failures such as these. One design approach is to use multiple processors, compare the outputs, and assume a failure has occurred if the outputs don`t agree. In systems where the design is constrained to a single processor, however, analytical methods are needed to identify potential single-point failures at the bit level so that an effective fault-tolerant strategy can be employed. This paper describes a top-down methodology, based upon Fault Tree Analysis, that has been used to identify potential high-consequence faults in microprocessor-based systems. The key to making the Fault Tree Analysis tractable is to effectively incorporate appropriate design features such as software path control and checksums so that complicated branches of the fault tree can be terminated early. The analysis uses simplified software flow diagrams depicting relevant code elements. Pertinent sections of machine language are then examined to identify suspect hardware. A comparison of this methodology with approaches based upon Failure Modes and Effects Analysis is made. The methodology is demonstrated through a simple example. Use of fault trees to show that software code is free of safety or security faults is also demonstrated.

More Details

History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

Borns, David J.

A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

More Details

An integrated approach to chemical microsystems: A state-of-the-art assessment

Michalske, Terry A.

For FY97, the LDRD National Grand Challenges Investment Area initiated three new projects with the goal of developing an integrated approach to chemical microsystems. Collectively, these projects promise to deliver a distributed system of fully integrated, autonomous chemical sensor microsystems (e.g., a handheld or smaller device to detect explosives in airports or chemical warfare agents in the battle field) and the microscience foundation to extend this concept to a wide range of applications. Reaching this goal will require research, development and integration over a wide range of technologies; some that have already been demonstrated and others that do not yet existence. This report documents the completion of the first project task: an assessment of the science and technology base needed to achieve the overall goals. The report is comprised of ten separate assessments, each focused on specific technology areas that were identified as having critical impact on the development of integrated chemical microsystems. Technical staff throughout SNL contributed to these assessments. Each section addresses the state of current technological developments in that technical area and forecasts the future science and technology needed to drive toward higher levels of miniaturization and integration in these systems. This report provides an important guide to the technical investments needed to achieve the National Grand Challenge goals in addition to clearly identifying valuable partnering opportunities with industry, university and other national laboratories. The ten areas of evaluation are: sampling, preconcentration, and separation; pumps, valves, plumbing; optical detection; acoustic detection; other detection approaches; power sources; data analysis; packaging and assembly; analog/digital microelectronics; and mobile platforms.

More Details

Nonvolatile field effect transistors based on protons and Si/SiO{sub 2}Si structures

Warren, William L.

Recently, the authors have demonstrated that annealing Si/SiO{sub 2}/Si structures in a hydrogen containing ambient introduces mobile H{sup +} ions into the buried SiO{sub 2} layer. Changes in the H{sup +} spatial distribution within the SiO{sub 2} layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO{sub 2}/Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO{sub 2} structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memory that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO{sub 2}/Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties.

More Details

Correlation of the crack initiation stress with epoxy network topology

Adolf, Douglas B.

Much controversy surrounds the dependence of stress intensity factor of glassy thermosets, epoxies in particular, with crosslink density. One could scan the literature and find references that claim K{sub Ic} increases with crosslink density, decreases with crosslink density, or is independent of crosslink density. The authors feel that two factors contribute to this confusion. First, a typical method for assessing this dependence relies on modifying the crosslink density by changing the precursor epoxy molecular weight. On the other hand, one could change stoichiometry or quench the reaction at intermediate extents of reaction to obtain large changes in crosslink density. However, most studies have not measured the resulting stress intensity factor of these partially cured systems at constant T-T{sub g}, where T{sub g} is the glass transition temperature of the epoxy. Since T{sub g} can change significantly with cure and since fracture processes at the crack tip are dissipative, they must work at constant T-T{sub g} to ensure that the nonlinear viscoelastic mechanisms are fairly compared. In this study, they quenched the reaction of the diglycidyl ether of bisphenol A (DGEBA) and diethanolamine (DEA) at various stages past the gel point and measured the three-point-bend stress intensity factor at a constant T-T{sub g} = {minus}50 C. The trend is clear and significant; increasing crosslink density directly increases the load-to-fail.

More Details

Integration of electro-optical mechanical systems and medicine: Where are we and where can we go?

Gourley, Paul L.

Microfabricated chip technologies offer researchers novel types of analysis of human clinical samples. Current examples of such technology include DNA amplification and analysis,and fluorescent cell analysis by flow cytometry. Potential applications include the development of rapid techniques for examining large numbers of cells in tissue or blood. This paper will outline criteria that successful devices must satisfy.

More Details

A method for critical software event execution reliability in high assurance systems

Kidd, Marie-Elena C.

This paper presents a method for Critical Software Event Execution Reliability (Critical SEER). The Critical SEER method is intended for high assurance software that operates in an environment where transient upsets could occur, causing a disturbance of the critical software event execution order, which could cause safety or security hazards. The method has a finite automata based module that watches (hence SEER) and tracks the critical events and ensures they occur in the proper order or else a fail safe state is forced. This method is applied during the analysis, design and implementation phases of software engineering.

More Details

EIGER: Electromagnetic Interactions GEneRalized

Johnson, William A.

EIGER (Electromagnetic Interactions GEneRalized), a single integrated software tool set, brings together a variety of spectral domain analysis methods. These include moment method solutions of integral equation formulations and finite elements solutions of partial differential equations. New software engineering methods, specifically, object oriented design, are being used to implement abstractions of key components of spectral analysis methods so that the tools can be easily modified and extended to treat new classes of problems. The key components of the numerical analysis tool, and their roles, are: elements - to describe the geometry, basis (expansion) functions - to interpolate the unknowns (e.g., fields) locally, and operators - to express the underlying physics formulations used to propagate the energy or enforce fundamental principals. The development of EMPACK provided the fundamental impetus for these abstractions which are discussed more fully in subsequent sections. This design approach is in contrast to standard design procedures where entire codes are developed around a particular element type with a specific basis function for a single operator. Although such tools can be effectively used to model large classes of problems, it is often very difficult, if not intractable, to extend the tools beyond their initial design. Overcoming this limitation is one of the most compelling goals of this project. We have successfully overcome roadblocks encountered in extension of past development efforts, such as the extension of Patch to treat wires and wire-surface junctions in the presence of non-homogeneous media. Moreover, the application base for EIGER grows as we cast a variety of Green`s functions into a form compatible with the numerical procedures in EIGER.

More Details

Cooperating robot arms LDRD 95-T-00027. Final report

Anderson, Robert J.

This report describes work conducted under the Laboratory Directed Research and Development (LDRD) Project entitled {open_quotes}Cooperating Robot Arms,{close_quotes} which was conducted from October 1, 1994, to September 30, 1996. Multiple cooperating robot arms are necessary for handling large ungainly objects, for achieving greater rigidity through mutual bracing, and for transferring and fixturing parts in a flexible fashion. There has been significant research in the area of robot arms, and yet there has been little commercial acceptance of these approaches. There are three primary reasons for this lack of success, the inability to deal with different kinematic modes of the system in a simple fashion, the difficulty in programming multi-robot behaviors, and a failure to apply this technology to realistic problems. The LDRD research described in this document addresses these critical areas. The report is divided into two primary sections, representing the thrusts of each year of research. First, the theoretical feasibility of building a modular control system for multiple robots which allows rapid reconfiguration of control system parameters for multi-arm modes of operation is demonstrated. Second, a high-level graphical programming environment which makes programming complex multi-robot tasks simpler is described.

More Details

Implementation of a fully automated process purge-and-trap gas chromatograph at an environmental remediation site

Blair, Dianna S.

The AQUASCAN, a commercially available, fully automated purge-and-trap gas chromatograph from Sentex Systems Inc., was implemented and evaluated as an in-field, automated monitoring system of contaminated groundwater at an active DOE remediation site in Pinellas, FL. Though the AQUASCAN is designed as a stand alone process analytical unit, implementation at this site required additional hardware. The hardware included a sample dilution system and a method for delivering standard solution to the gas chromatograph for automated calibration. As a result of the evaluation the system was determined to be a reliable and accurate instrument. The AQUASCAN reported concentration values for methylene chloride, trichloroethylene, and toluene in the Pinellas ground water were within 20% of reference laboratory values.

More Details

Use of air gap structures to lower intralevel capacitance

Fleming, J.G.

Interconnect delays, arising in part from intralevel capacitance, are one of the factors limiting the performance of advanced circuits. In addition, the problem of filling the spaces between neighboring metal lines with an insulator is becoming increasingly acute as aspect ratios increase. We address these problems simultaneously by intentionally creating an air gap between closely spaced metal lines. Undesirable topography is eliminated using a spin-on dielectric. We then cap the wafers with silicon dioxide and planarize using chemical mechanical polishing. Simple modeling of test structures predicts an equivalent dielectric constant of 1.9 on features similar to those expected for 0.25 micron technologies. Two level metal test structures fabricated in a 0.5 micron CMOS technology show that the process can be readily integrated with current standard CMOS processes. The potential problems of via misalignment, overall dielectric stack height, and the relative difficulty of ensuring void formation compared to that of ensuring a void-free fill are considered.

More Details

Characterization of the mechanical properties of LTCC ``Green Tape``{trademark} for the MC4352 MET

Uribe, Fernando U.

During the qualification of Low Temperature Cofire Ceramic (LTCC) as an enabling WR packaging technology for manufacturing the MC4352 (MET), issues pertaining to the mechanical performance of the DuPont 951 ``Green Tape{trademark}`` tape were investigated. Understanding the fundamental mechanical performance of the DuPont 951 substrate material, including the effect of surface metallization in STS environments, is required to determine MC4352 survivability. Both fast fracture and slow crack growth behavior were characterized for the MET configuration. A minimum stress threshold of 6.5 Kpsi for slow crack growth was established for substrates containing surface conductors, resistors, and resistor glaze. Finite element analysis was used to optimize the MET substrate thickness and to design the supporting structures to limit mechanical loading of the populated substrate below the slow crack growth threshold. Additionally, test coupons that failed during environmental testing are discussed. The root cause of electrical failures was attributed to solder leaching of the thick film metallization. Changes to solder pad configuration were incorporated to reduce the solder-metallization intermetallic from reaching the substrate interface. Finally, four-point bend tests revealed that the YAG laser approach for sizing LTCC substrates induced flaws, which substantially reduced the overall strength of the test samples as compared to samples sized using a diamond saw.

More Details

Measurements on spent-fuel assemblies at Arkansas Nuclear One using the Fork system. Final report, January 1995

Ewing, R.I.

The Fork measurement system has been used to examine spent-fuel assemblies at the two reactors of Arkansas Nuclear One, operated by Entergy Operations, Inc. The Unit 1 reactor is a Babcock and Wilcox (B and W) design, and the Unit 2 reactor is a Combustion Engineering (CE) design. The neutron and gamma-ray emissions from individual spent-fuel assemblies were measured in the storage pools by raising each assembly pathway out of the storage rack and performing a measurement near the center of the assembly. The overall accuracy of the measurements after corrections is about 2%. Thirty-four assemblies were examined at Unit 1, and forty-one assemblies at Unit 2. The average deviation of the burnup measurements from the calibration was 3.0% at Unit 1 and 3.5% at Unit 2, indicating 2 to 3% random variation among the reactor records. There was no indication of clearly anomalous assemblies. Axial Scans of the variation in neutron and gamma ray emission were obtained by collecting data at several locations along the length of three assemblies at Unit 2. Two of these assemblies were nonstandard in that each contained a small neutron source. The sources were detected by the axial scans. The test program was a cooperative effort involving Sandia National Laboratories, Los Alamos National Laboratory, Entergy Operations, Inc., the Electric Power Research Institute, and the Office of Civilian Radioactive Waste Management of the US Department of Energy.

More Details

Development of an active boring bar for increased chatter immunity

Redmond, James M.

The development and initial evaluation of a prototype boring bar featuring active vibration control for increased chatter immunity is described. The significance of active damping both normal and tangential to the workpiece surface is evaluated, indicating the need for two axis control to ensure adequate performance over expected variations in tool mounting procedures. The prototype tool features a commercially available boring bar modified to accommodate four PZT stack actuators for two axis bending control. Measured closed-loop dynamics are combined with a computer model of the boring process to simulate increased metal removal rate and improved workpiece surface finish through active control.

More Details

An overview of micromachined platforms for thermal sensing and gas detection

Manginell, R.P.; Smith, J.H.; Ricco, A.J.

Micromachined hotplates, membranes, filaments, and cantilevers have all been used as platforms for thermal sensing and gas detection. Compared with conventional devices, micromachined sensors are characterized by low power consumption, high sensitivity, and fast response time. Much of these gains can be attributed to the size reductions achieved by micromachining. In addition, micromachining permits easy, yet precise tailoring of the heat transfer characteristics of these devices. By simple alterations in device geometry and materials used, the relative magnitudes of radiation, convection and conduction losses and Joule heat gains can be adjusted, and in this way device response can be optimized for specific applications. The free-standing design of micromachined platforms, for example, reduces heat conduction losses to the substrate, thereby making them attractive as low power, fast-response heaters suitable for a number of applications. However, while micromachining solves some of the heat transfer problems typical of conventionally produced devices, it introduces some of its own. These trade-offs will be discussed in the context of several micromachined thermal and gas sensors present in the literature. These include micromachined flow sensors, gas thermal conductivity sensors, pressure sensors, uncooled IR sensors, metal-oxide and catalytic/calorimetric gas sensors. Recent results obtained for a microbridge-based catalytic/calorimetric gas sensor will also be presented as a means of further illustrating the concepts of thermal design in micromachined sensors.

More Details

Refractive aiming corrections for satellite observation of stars

Vittitoe, C.N.

Standard references describe how apparent zenith angles differ from true zenith angles for observers on the Earth. In fact, correction formulae are available for aiming Earth-based sensors at stars; some corrections give variations as a function of observer altitude. Such corrections have not been available for observers in space. This report develops formulae appropriate for proper aiming from space-based sensors toward the relatively few stars that are near the Earth`s limb at any given time. These formulae correct for refractive effects and may be critical for steerable space-borne sensors with fields of view less than one degree, tasked to observe starlight passing near the Earth`s surface. Ray tracing in the U.S. Standard Atmosphere, 1976 including H{sub 2}O effects, is used to determine relations between the refracted tangent height, the apparent tangent height resulting from observation at the sensor, and the angle through which the detected rays have deviated. Analytic fits of the ray deviation as a function of apparent tangent height allows quick determination of corrections needed for a space-borne sensor. Using those results that apply in the plane of incidence and using the necessary coordinate rotations, alterations in the star`s apparent right ascension and declination are evaluated to improve the aim. Examples illustrate that alterations can be larger than one degree, with effects lasting up to a few minutes.

More Details

United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

Warner, Peggy J.

The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects.

More Details

Mixed low-level waste form evaluation

Pohl, Phillip I.

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

More Details

Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

Buckentin, J.M.R.

Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced.

More Details

Post-crash fuel dispersal

Tieszen, Sheldon R.

This paper is a brief overview of work over the last several decades in understanding what occurs to jet fuel stored in aircraft fuel tanks on impact with the ground. Fuel dispersal is discussed in terms of the overall crash dynamics process and impact regimes are identified. In a generic sense, the types of flow regimes which can occur are identified and general descriptions of the processes are given. Examples of engineering level tools, both computational and experimental, which have applicability to analyzing the complex environments are presented. Finally, risk based decision is discussed as a quick means of identifying requirements for development of preventative or mitigation strategies, such as further work on the development of an anti-misting agent.

More Details

Energy technology progress for sustainable development

Arvizu, D.E.

Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

More Details

Semiconductor microlasers with intracavity microfluidics for biomedical applications

Gourley, Paul L.

Microfabricated electro-optical-mechanical systems are expected to play an important role in future biomedical, biochemical and environmental technologies. Semiconductor photonic materials and devices are attractive components of such systems because of their ability to generate, transmit, modulate, and detect light. In this paper the authors report investigations of light-emitting semiconductor/glass microcavities filled with simple fluids. They examine surface tension for transporting liquids into the intracavity space and study the influence of the liquid on the spectral emission of the microcavity.

More Details

Low-power multi-chip module and board-level links for data transfer

Carson, R.F.

More Details

Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

More Details

Detection of lateral composition modulation in a (InAs){sub n}/(GaAs){sub n} short period superlattice on InP by magnetoexciton spectroscopy

Jones, Eric D.

An experimental signature for detecting spontaneous lateral composition modulation in a (InAs){sub n}/(GaAs){sub n} short period superlattice on a InP substrate based on magnetoexciton spectroscopy is presented. The authors find by aligning the magnetic field in three crystallographic directions, one parallel to and the other two perpendicular to the composition modulation direction, that the magnetoexciton shifts are anisotropic and are a good indicator for the presence of composition modulation.

More Details

MACCS2 development and verification efforts

Young, Mary L.

MACCS2 represents a major enhancement of the capabilities of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, released in 1987, was developed to estimate the potential impacts to the surrounding public of severe accidents at nuclear power plants. The principal phenomena considered in MACCS/MACCS2 are atmospheric transport and deposition under time-variant meteorology, short-term and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. MACCS2 was developed as a general-purpose analytical tool applicable to diverse reactor and nonreactor facilities. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. In addition, errors that had been identified in MACCS version1.5.11.1 were corrected, including an error that prevented the code from providing intermediate-phase results. MACCS2 version 1.10 beta test was released to the beta-test group in May, 1995. In addition, the University of New Mexico (UNM) has completed an independent verification study of the code package. Since the beta-test release of MACCS2 version 1.10, a number of minor errors have been identified and corrected, and a number of enhancements have been added to the code package. The code enhancements added since the beta-test release of version 1.10 include: (1) an option to allow the user to input the {sigma}{sub y} and {sigma}{sub z} plume expansion parameters in a table-lookup form for incremental downwind distances, (2) an option to define different initial dimensions for up to four segments of a release, (3) an enhancement to the COMIDA2 food-chain model preprocessor to allow the user to supply externally calculated tables of tritium food-chain dose per unit deposition on farmland to support analyses of tritium releases, and (4) the capability to calculate direction-dependent doses.

More Details

Constraint-based interactive assembly planning

Wilson, R.H.

The constraints on assembly plans vary depending on the product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner`s algorithms. Replanning is fast enough to enable a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies. 12 refs., 2 figs., 3 tabs.

More Details

Diffractive optical elements for the production of synthetic spectra

Sinclair, Michael B.

We demonstrate that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of real compounds. In particular, we describe a modified phase-retrieval algorithm that we have used to design diffractive elements of this type and we present experimental results for a diffractive optic which is capable of synthesizing the infrared spectrum of HF between 3600 cm{sup -1} and 4300 cm{sup -1}. The reflection-mode diffractive optic consists of 4096 lines, each 4.5 {mu}m wide, at 16 discrete depths relative to the substrate (from 0 to 1.2 {mu}m), and was fabricated on a silicon wafer using anisotropic reactive ion-beam etching in a four-mask-level process. We propose the use of such elements to replace reference cells in a new type of correlation spectroscopy that we call {open_quotes}holographic correlation spectroscopy.{close_quotes} Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact disk-like format, will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Further, this approach can be used to perform correlation-based measurements of hazardous or transient species, for which conventional correlation spectroscopy is impractical.

More Details

Automatic tool path generation for finish machining

Kwok, Kwan S.

A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch diameter CBN grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm.

More Details

The role of unattended ground sensors (UGS) in regional confidence building and arms control

Duggan, Ruth A.

Although the Cold War has ended, the world has not become more peaceful. Without the stability provided by an international system dominated by two super-powers, local conflicts are more likely to escalate. Agreements to counter destabilizing pressures in regional conflicts can benefit from the use of cooperative monitoring. Cooperative monitoring is the collecting, analyzing, and sharing of information among parties to an agreement. Ground sensor technologies can contribute to the collection of relevant information. If implemented with consideration for local conditions, cooperative monitoring can build confidence, strengthen existing agreements, and set the stage for continued progress. This presentation describes two examples: the Israeli-Egyptian Sinai agreements of the 1970s and a conceptual example for the contemporary Korean Peninsula. The Sinai was a precedent for the successful use of UGS within the context of cooperative monitoring. The Korean Peninsula is the world`s largest military confrontation. Future confidence building measures that address the security needs of both countries could decrease the danger of conflict and help create an environment for a peace agreement.

More Details

Testing of the Sunstove Organization`s Sunstove Solar Oven

Moss, Timothy A.

A Sunstove Organization`s Sunstove was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 115{degrees}C (240{degrees}F). It heated two liters of water from room temperature to 80{degrees}C (175{degrees}F) in about two hours. Observations were made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on the operation of the solar oven were also noted.

More Details

Testing of the Burns-Milwaukee`s Sun Oven

Moss, Timothy A.

A Burns-Milwaukee Sun Oven was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160{degrees}C (320{degrees}F). It heated two liters of water from room temperatures to 80{degrees}C, (175{degrees}F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted.

More Details

The interplay of fractures and sedimentary architecture: Natural gas from reservoirs in the Molina sandstones, Piceance Basin, Colorado

Lorenz, John C.

The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shown that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation.

More Details

A sensor-based automation system for handling nuclear materials

Drotning, William D.

An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

More Details

Self-repairing control for damaged robotic manipulators

Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J.

Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program.

More Details

Physical protection system design and evaluation

Williams, J.D.

The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary`s capabilities, and range of adversary`s tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, {open_quotes}what to protect against whom.{close_quotes} The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given.

More Details

A feasibility study of space-charge neutralized ion induction linacs: Final report

Slutz, Stephen A.

Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of {open_quotes}multicusp{close_quotes} accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion.

More Details

Insights from the downhole dynamometer database

Waggoner, J.R.

The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. Following a brief description of the downhole dynamometer tools, data collection program, and database content, this paper will illustrate a few of the interesting and unique insights gained from the downhole data.

More Details

Using artificial neural networks to predict the performance of a liquid sodium reflux pool boiler solar receiver

Moreno, James B.

Liquid metal reflux receivers (LMRRs) have been designed to serve as the interface between the solar concentrator dish and the Stirling engine of a dish Stirling power system. Such a receiver has undergone performance testing at Sandia National Laboratory to determine cold- and hot-start characteristics, component temperatures, throughput power, and thermal efficiency, for various times of day and year. Performance modeling will play an important role in the future commercialization of these systems since it will be necessary to predict overall energy production for potential installation sites based on available meteorological data. As a supplement to numerical thermal modeling, artificial neural networks (ANNs) have been investigated for their effectiveness in predicting long-term energy production of a LMRR. Two types of data were used to train ANNs, actual on-sun test data, and ersatz data. ANNs were trained on both the raw on-sun test data and on pre-formatted versions of the data to determine if pre-formatting of the input data would improve network training efficiency and predictive abilities. Usable on-sun test data were available for only a few days of performance testing. Therefore, a set of year-long ersatz data was generated using a transient numerical model driven by one-minute meteorological data from the Solar Energy Meteorological Research and Training Sites (SEMRTS) data base for Davis, CA. The ersatz data were used to train ANNs based on warm-month data, cool-month data, and year-long data to investigate the impact of using seasonal test data on long-term predictive capabilities. The findings indicated that a network trained on data from a limited time span could successfully predict annual energy output of a liquid metal receiver.

More Details
Results 94001–94100 of 99,299
Results 94001–94100 of 99,299