Publications

Results 26–50 of 156

Search results

Jump to search filters

Topological Quantum Materials for Quantum Computation

Nenoff, T.M.; Chou, Stanley S.; Dickens, Peter D.; Modine, N.A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, J.R.; Medlin, Douglas L.; Leonard, Francois L.; Pan, Wei P.

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

Topological Quantum Materials for Realizing Majorana Quasiparticles

Chemistry of Materials

Nenoff, T.M.; Pan, Wei P.; Sharma, Peter A.; Lima-Sharma, Ana L.; Lee, Stephen R.

In the past decade, basic physics, chemistry, and materials science research on topological quantum materials - and their potential use to implement reliable quantum computers - has rapidly expanded to become a major endeavor. A pivotal goal of this research has been to realize materials hosting Majorana quasiparticles, thereby making topological quantum computing a technological reality. While this goal remains elusive, recent data-mining studies, performed using topological quantum chemistry methodologies, have identified thousands of potential topological materials - some, and perhaps many, with potential for hosting Majoranas. We write this Review for advanced materials researchers who are interested in joining this expanding search, but who are not currently specialists in topology. The first half of the Review addresses, in readily understood terms, three main areas associated with topological sciences: (1) a description of topological quantum materials and how they enable quantum computing; (2) an explanation of Majorana quasiparticles, the important topologically endowed properties, and how it arises quantum mechanically; and (3) a description of the basic classes of topological materials where Majoranas might be found. The second half of the Review details selected materials systems where intense research efforts are underway to demonstrate nontrivial topological phenomena in the search for Majoranas. Specific materials reviewed include the groups II-V semiconductors (Cd3As2), the layered chalcogenides (MX2, ZrTe5), and the rare-earth pyrochlore iridates (A2Ir2O7, A = Eu, Pr). In each case, we describe crystallographic structures, bulk phase diagrams, materials synthesis methods (bulk, thin film, and/or nanowire forms), methods used to characterize topological phenomena, and potential evidence for the existence of Majorana quasiparticles.

More Details

A missing step is a key step

Nature Materials

Zhang, Fan; Pan, Wei P.

In a uniform superconductor, electrons form Cooper pairs that pick up the same quantum mechanical phase for their bosonic wavefunctions. This spontaneously breaks the gauge symmetry of electromagnetism. In 1962 Josephson predicted, and it was subsequently observed, that Cooper pairs can quantum mechanically tunnel between two weakly coupled superconductors that have a phase difference Φ. The resulting supercurrent is a 2π periodic function of the phase difference Φ across the junction. This is the celebrated Josephson effect. More recently, a fractional Josephson effect related to the presence of Majorana bound states — Majoranas — has been predicted for topological superconductors. This fractional Josephson effect has a characteristic 4π periodic current–phase relation. Now, writing in Nature Materials, Chuan Li and colleagues report experiments that utilize nanoscale phase-sensitive junction technology to induce superconductivity in a fine-tuned Dirac semimetal Bi0.97Sb0.03 and discover a significant contribution of 4π periodic supercurrent in Nb–Bi0.97Sb0.03–Nb Josephson junctions under radiofrequency irradiation.

More Details

Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer

New Journal of Physics

Yu, Wenlong; Clerico, V.; Fuentevilla, C.H.; Shi, X.; Jiang, Y.; Saha, D.; Lou, W.K.; Chang, K.; Huang, D.H.; Gumbs, G.; Smirnov, D.; Stanton, C.J.; Jiang, Z.; Bellani, V.; Meziani, Y.; Diez, E.; Pan, Wei P.; Hawkins, Samuel D.; Klem, John F.

We report here our recent electron transport results in spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (∼500 kΩ) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature dependence above T = 7 K and perfect stability against quantizing magnetic fields. We discuss several mechanisms for that unexpectedly large resistance in this zero-gap semi-metal system including the formation of an excitonic insulator state.

More Details

Electrical-current-induced magnetic hysteresis in self-assembled vertically aligned La2/3Sr1/3MnO3:ZnO nanopillar composites

Physical Review Materials

Pan, Wei P.; Lu, Ping L.; Ihlefeld, J.F.; Lee, Stephen R.; Choi, E.S.; Jiang, Y.; Jia, Q.X.

Magnetoresistive random-access memory (MRAM) is poised to become a next-generation information storage device. Yet, many materials challenges remain unsolved before it can become a widely used memory storage solution. Among them, an urgent need is to identify a material system that is suitable for downscaling and is compatible with low-power logic applications. Self-assembled, vertically aligned La2/3Sr1/3MnO3: ZnO nanocomposites, in which La2/3Sr1/3MnO3 (LSMO) matrix and ZnO nanopillars form an intertwined structure with coincident-site-matched growth occurring between the LSMO and ZnO vertical interfaces, may offer new MRAM applications by combining their superior electric, magnetic ( B ), and optical properties. Here, in this Rapid Communication, we show the results of electrical current induced magnetic hysteresis in magnetoresistance measurements in these nanopillar composites. We observe that when the current level is low, for example, 1 µA, the magnetoresistance displays a linear, negative, nonhysteretic B field dependence. Surprisingly, when a large current is used, I > 10 µA, a hysteretic behavior is observed when the B field is swept in the up and down directions. This hysteresis weakens as the sample temperature is increased. Finally, a possible spin-valve mechanism related to this electrical current induced magnetic hysteresis is proposed and discussed.

More Details

Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5

ACS Applied Materials and Interfaces

Leonard, Francois L.; Yu, Wenlong; Celio, Kimberlee C.; Medlin, Douglas L.; Sugar, Joshua D.; Talin, A.A.; Pan, Wei P.

The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.

More Details

Emergent Phenomena in Oxide Nanostructures

Pan, Wei P.; Ihlefed, Jon F.; Lu, Ping L.; Lee, Stephen R.

The field of oxide electronics has seen tremendous growth over two decades and oxide materials find wide-ranging applications in information storage, fuel cells, batteries, and more. Phase transitions, such as magnetic and metal-to-insulator transitions, are one of the most important phenomena in oxide nanostructures. Many novel devices utilizing these phase transitions have been proposed, ranging from ultrafast switches for logic applications to low power memory structures. Yet, despite this promise and many years of research, a complete understanding of phase transitions in oxide nanostructures remains elusive. In this LDRD, we report two important observations of phase transitions. We conducted a systematic study of these transitions. Moreover, emergent quantum phenomena due to the strong correlations and interactions among the charge, orbital, and spin degrees of freedom inherent in transition metal oxides were explored. In addition, a new, fast atomic-scale chemical imaging technique developed through the characterization of these oxides is presented.

More Details

High-cooperativity terahertz landau polaritons in the ultrastrong coupling regime

International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz

Li, Xinwei; Zhang, Qi; Lou, Minhan; Reno, J.L.; Pan, Wei P.; Watson, John D.; Manfra, Michael J.; Kono, Junichiro

We have integrated an ultrahigh mobility twodimensional electron gas with a high-quality-factor terahertz photonic cavity. With a quantizing magnetic field and at low temperatures, we demonstrated collective nonperturbative coupling of the electron cyclotron resonance with terahertz cavity photons with a high cooperativity. Due to the suppression of superradiance-induced broadening of cyclotron resonance by the high-quality-factor cavity, our hybrid quantum system exhibited unprecedentedly sharp polariton lines and a large vacuum Rabi splitting simultaneously.

More Details

National High Magnetic Field Laboratory 2016 Annual Research Report: Termination of Two-Dimensional Metallic Conduction near the Metal-Insulator Transition in Si/SiGe Quantum Wells

Pan, Wei P.; Lu, Tzu-Ming L.; Xia, J.S.; Sullivan, N.S.; Huang, S.H.; Chuang, Y.; Li, J.Y.; Liu, C.W.; Tsui, D.C.

The physical properties of two-dimensional (2D) electrons have been a subject of interest for a long time. Yet after many years of research, the ground states of a 2D electron system (2DES) in the presence of disorder and electron-electron interaction, a realistic situation in experiments, remain an open question. Recent observations of a downturn in conductivity at low temperatures in a Si/SiGe quantum well [1], Si-MOSFETs [2,3], and 2D holes in GaAs [4-6] seem to suggest that disorder plays an important role in the so-called 2D metal-insulator transition (MIT) and at T → 0 2DES may eventually become insulating. In this experiment, we focus on the downturn behavior as a function of spin polarization, which is varied by an in-plane magnetic field.

More Details

Tilted magnetic field study of ZrTe5

Yu, Wenlong; Jiang, Y.; Yang, J.; Dun, Zhiling; Zhou, H.D.; Jiang, Z.; Lu, Ping L.; Pan, Wei P.

ZrTe5, a topological semimetal, has recently attracted great attention due to its extraordinary electronic properties. Extensive studies have been carried out in ZrTe5 on their charge transport properties. However, there are few studies on their spin properties. One well-developed technique to study spin degeneracy of a Landau level (LL) in a two-dimensional system is by tilting magnetic field. It is known that the Landau level energy is proportional to the magnetic field normal component while the Zeeman energy scales with the total magnetic field. Therefore, these two energy scales can be tuned relatively to each other in a tilted magnetic field.

More Details
Results 26–50 of 156
Results 26–50 of 156