Publications

58 Results

Search results

Jump to search filters

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David; Stoltzfus, Brian; Austin, Kevin N.; Foulk, James W.; Breden, Eric W.; Cooper, R.A.; Cuneo, Michael E.; Davis, Jean-Paul; Ennis, J.B.; Gard, Paul D.; Greiser, G.W.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter; Lechien, K.R.; Leckbee, Joshua; Lucero, Diego; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth; Savage, Mark E.; Sceiford, M.E.; Spielman, R.B.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David; Stoltzfus, Brian; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

Review of Scientific Instruments

Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael E.; Owen, Albert C.; Mckenney, John; Johnson, Drew; Radovich, Shawn; Kaye, Ronald J.; Mcbride, Ryan; Alexander, Charles S.; Awe, Thomas J.; Slutz, Stephen A.; Sefkow, Adam B.; Haill, Thomas A.; Jones, Peter; Argo, Jeffrey W.; Dalton, Devon; Robertson, G.K.; Waisman, Eduardo M.; Sinars, Daniel; Meissner, Joel; Milhous, Mark; Nguyen, Doan; Mielke, Chuck

We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

More Details

Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519)

Alexander, Charles S.; Haill, Thomas A.; Dalton, Devon; Rovang, Dean C.; Lamppa, Derek C.

The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon; Drake, Richard R.; Weirs, Gregory; Adams, Brian M.; Vigil, Dena; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua; Siefert, Christopher; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle; Desjarlais, Michael P.; Love, Edward; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.J.

Abstract not provided.

Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams

Procedia Engineering

Haill, Thomas A.; Mattsson, Thomas; Root, Seth; Magyar, Rudolph J.

Hydrocarbon polymers and foams are utilized in high energy-density physics (HEDP) and inertial confinement fusion (ICF) experiments as tampers, energy conversion and radiation pulse shaping layers in dynamic hohlraum Z-pinches, and ablators in ICF capsule implosions. Shocked foams frequently are found to be mixed with other materials either by intentional doping with high-Z elements or by instabilities and turbulent mixing with surrounding materials. In this paper we present one-dimensional and three-dimensional mesoscale hydrodynamic simulations of high-Z doped poly-(4-methyl-1-pentene) (PMP or TPX) foams in order to examine the validity of various equation of state (EOS) mixing rules available in two state-of-the-art simulation codes. Platinum-doped PMP foam experiments conducted at Sandia's Z facility provide data that can be used to test EOS mixing rules. We apply Sandia's ALEGRA-MHD code and the joint LLNL/SNL KULL HEDP code to model these doped foam experiments and exercise the available EOS mixing methods. One-dimensional simulations homogenize the foam with platinum dopant and show which EOS mixing methods produce results that are consistent with measured Hugoniot states. These simulations produce sharp shock fronts that are well described by traditional Hugoniot relations. Three-dimensional mesoscale simulations explicitly model the foam structure embedded with discrete platinum particles. The heterogeneous structure of the foam results in diffuse shock fronts and an unsteady post-shock state with large fluctuations about an average state. We compare shock propagation through pure foam and Pt-doped foams (50-50 mixture by weight) at equal average initial density, and examine how well the results compare to the experimentally measured Hugoniot states. © 2013 The Authors.

More Details

Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams

AIP Conference Proceedings

Haill, Thomas A.; Mattsson, Thomas; Root, Seth; Schroen, D.G.; Flicker, Dawn

Hydrocarbon foams are commonly used in high energy-density physics (HEDP) applications, for example as tamper and ablation materials for dynamic materials or inertial confinement fusion (ICF) experiments, and as such are subject to shock compression from tens to hundreds of GPa. Modeling of macro-molecular materials like hydrocarbon foams is challenging due to the heterogeneous character of the polymers and the complexity of voids and large-scale structure. Under shock conditions, these factors contribute to a relatively larger uncertainty of the post-shock state compared to that encountered for homogenous materials; therefore a quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of poly-(4-methyl-1-pentene) (PMP) foams. We devise models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments conducted on Sandia's Z machine at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties of the simulations with the scatter in the experimental data. © 2012 American Institute of Physics.

More Details

Simulation and analysis of Magnetically-Applied Pressure-Shear (MAPS) experiments

Digest of Technical Papers-IEEE International Pulsed Power Conference

Haill, Thomas A.; Alexander, Charles S.

Magnetically-Applied Pressure-Shear (MAPS) is a new experimental technique to measure material shear strength at high pressures and has been developed for use on MHD driven pulsed power platforms [1]. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse velocity interferometry system (VISAR) from which the sample strength is determined [2]. This paper presents and analyzes the 2D MHD simulations used to design the MAPS experiments. © 2011 IEEE.

More Details

Simulation and analysis of Magnetically-Applied Pressure-Shear (MAPS) experiments

Haill, Thomas A.; Alexander, Charles S.

A new experimental technique to measure material shear strength at high pressures has been developed for use on magnetohydrodynamic (MHD) drive pulsed power platforms. The technique is referred to as Magnetically-Applied Pressure-Shear (MAPS). By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse velocity interferometry system (VISAR) from which the sample strength is determined. The strength of materials is defined as the ability of a material to sustain deviatoric (shear) stresses. Strength is an important aspect of the response of materials subjected to compression to high pressure. Beyond the elastic response, material strength will govern at what pressure and to what extent a material will plastically deform. The MAPS technique cleverly exploits the property that, for a von Mises yield criterion at a given longitudinal stress, the maximum amplitude shear wave that can be transmitted is limited by the strength at that stress level. Successful fielding of MAPS experiments to measure shear stresses relies upon correct numerical simulation of the experiment. Complex wave interactions among forward and reflected longitudinal and shear waves, as well as the advancing magnetic diffusion front of the MHD drive, can make the design of the experiment complicated. Careful consideration must be given to driver, sample, and anvil materials; to the thicknesses of the driver, sample and anvil layers; as well as to the timing of the interacting waves. This paper will present and analyze the 2D MHD simulations used to design the MAPS experiments. The MAPS experiments are modeled using Sandia's ALEGRA-MHD simulation code. ALEGRA-MHD is an operator-split, multi-physics, multi-material, arbitrary lagrangian-eulerian code developed to model magnetic implosion, ceramic fracture, and electromagnetic launch. We will detail the numerical investigations into MHD shear generation, longitudinal and shear stress coupling, timing of wave interactions, and transmission of shear at material interfaces.

More Details

Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams

Haill, Thomas A.; Mattsson, Thomas; Root, Seth; Flicker, Dawn

Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

More Details

Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856)

Alexander, Charles S.; Haill, Thomas A.; Lamppa, Derek C.

A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

More Details

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund; Vesey, Roger A.; Cuneo, Michael E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, K.J.

Abstract not provided.

ALEGRA-HEDP : version 4.6

Brunner, Thomas A.; Garasi, Christopher J.; Haill, Thomas A.; Mehlhorn, Thomas A.; Robinson, Allen C.; Summers, Randall M.

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamics, thermal conduction, and radiation transport effects, and two material temperature physics.

More Details

ALEGRA : version 4.6

Wong, Michael K.; Brunner, Thomas A.; Garasi, Christopher J.; Haill, Thomas A.; Mehlhorn, Thomas A.; Drake, Richard R.; Hensinger, David M.; Robbins, Joshua; Robinson, Allen C.; Summers, Randall M.; Voth, Thomas E.

ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite element code used for modeling solid dynamics problems involving large distortion and shock propagation. This document describes the basic user input language and instructions for using the software.

More Details

ALEGRA: User Input and Physics Descriptions Version 4.2

Boucheron, Edward A.; Haill, Thomas A.; Peery, James S.; Petney, Sharon; Robbins, Joshua; Robinson, Allen C.; Summers, Randall M.; Voth, Thomas E.; Wong, Michael K.; Brown, Kevin H.; Budge, Kent G.; Burns, Shawn P.; Carroll, Daniel E.; Carroll, Susan; Christon, Mark; Drake, Richard R.; Garasi, Christopher J.

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation. This document describes the user input language for the code.

More Details

The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

Mehlhorn, Thomas A.; Desjarlais, Michael P.; Haill, Thomas A.; Lash, Joel S.; Rosenthal, Stephen E.; Slutz, Stephen A.; Stoltz, Peter H.; Vesey, Roger A.

Peak x-ray powers as high as 280 {+-} 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments.

More Details
58 Results
58 Results