Publications

3 Results

Search results

Jump to search filters

ALEGRA: User Input and Physics Descriptions Version 4.2

Boucheron, Edward A.; Haill, Thomas A.; Peery, James S.; Petney, Sharon P.; Robbins, Joshua R.; Robinson, Allen C.; Summers, Randall M.; Voth, Thomas E.; Wong, Michael K.; Brown, Kevin H.; Budge, Kent G.; Burns, Shawn P.; Carroll, Daniel E.; Carroll, Susan K.; Christon, Mark A.; Drake, Richard R.; Garasi, Christopher J.

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation. This document describes the user input language for the code.

More Details

Equation of State Measurements of Materials Using a Three-Stage Gun to Impact Velocities of 11km/s

Reinhart, William D.; Chhabildas, Lalit C.; Carroll, Daniel E.

Understanding high pressure behavior of homogeneous as well as heterogeneous materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. At very high impact velocities, material properties will be subjugated to phase-changes, such as melting and vaporization. These phase states cannot be obtained through conventional gun technology. These processes need to be represented accurately in hydrodynamic codes to allow credible computational analysis of impact events resulting from hypervelocity impact. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 km/s. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology.

More Details

Simulation of armor penetration by tungsten rods: ALEGRA validation report

Carroll, Daniel E.

Results from simulations of the impact and penetration of tungsten alloy rods into thick rolled armor plates are presented. The calculations were performed with the CTH and ALEGRA computer codes using the DOE massively parallel TFLOPS computer co-developed by Sandia National Laboratory and Intel Corporation. Comparisons with experimental results are presented. Agreement of the two codes with each other and with the empirical results for penetration channel depth and radius is very close. Other shock physics and penetration features are also compared to simulation results.

More Details
3 Results
3 Results