Publications

Results 151–155 of 155

Search results

Jump to search filters

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, A.P.; Wong, Chungnin C.; Yang, Pin; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, Mark T.; Buchheit, Thomas E.; Lavan, David A.; Chen, Er-Ping; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Computational methods for coupling microstructural and micromechanical materials response simulations

Holm, Elizabeth A.; Wellman, Gerald W.; Battaile, Corbett C.; Buchheit, Thomas E.; Fang, H.E.; Rintoul, Mark D.; Vedula, Venkata R.; Glass, Sarah J.; Knorovsky, Gerald A.; Neilsen, Michael K.

Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

More Details

Testing of Critical Features of Polysilicon MEMS

Lavan, David A.; Buchheit, Thomas E.

The behavior of MEMS devices is limited by the strength of critical features such as thin ligaments, oxide cuts joining layers, pin joints and hinges. Devices fabricated at Sandia's Microelectronic Development Laboratory have been successfully tested to investigate these features. A series of measurements were performed on samples with gage lengths of 15 to 1000 microns, using conventional and tungsten coated samples as well as samples that include the critical features of standard components in the test section. Specimens have a freely moving pin joint on one end that anchors the sample to the silicon die to allow rotation to reduce effects of bending. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. Load is calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. The specimen cross section and gage length dimensions were verified by measuring against a standard in the SEM. Multiple tests can be programmed at one time and performed without operator assistance allowing the collection of significant populations of data.

More Details

Laser Wire Deposition (WireFeed) for Fully Dense Shapes LDRD

Griffith, Michelle L.; Romero, Joseph A.; Ensz, Mark T.; Greene, Donald L.; Reckaway, Daryl E.; Morin, Jacob A.; Buchheit, Thomas E.; Lavan, David A.; Crenshaw, Thomas B.; Tikare, Veena

Direct metal deposition technologies produce complex, near net shape components from Computer Aided Design (CAD) solid models. Most of these techniques fabricate a component by melting powder in a laser weld pool, rastering the weld bead to form a layer, and additively constructing subsequent layers. This report will describe anew direct metal deposition process, known as WireFeed, whereby a small diameter wire is used instead of powder as the feed material to fabricate components. Currently, parts are being fabricated from stainless steel alloys. Microscopy studies show the WireFeed parts to be filly dense with fine microstructural features. Mechanical tests show stainless steel parts to have high strength values with retained ductility. A model was developed to simulate the microstructural evolution and coarsening during the WireFeed process. Simulations demonstrate the importance of knowing the temperature distribution during fabrication of a WireFeed part. The temperature distribution influences microstructural evolution and, therefore, must be controlled to tailor the microstructure for optimal performance.

More Details

Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

Buchheit, Thomas E.

LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

More Details
Results 151–155 of 155
Results 151–155 of 155