Mechanical and Tribological Behavior of Polymer-Derived Ceramics Constituted from SiCxOyNz
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Advanced Engineering Materials.
Abstract not provided.
Abstract not provided.
Proposed for presentation at the Journal of Microelectromechanical Systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science-based infrastructure to enhance the production of integrated metal--semiconductor systems and will directly impact RF MEMS and LIGA technologies at Sandia.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.
Abstract not provided.
Proposed for publication in Mechanics of Materials.
Abstract not provided.
The purpose of microstructural control is to optimize materials properties. To that end, they have developed sophisticated and successful computational models of both microstructural evolution and mechanical response. However, coupling these models to quantitatively predict the properties of a given microstructure poses a challenge. This problem arises because most continuum response models, such as finite element, finite volume, or material point methods, do not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical properties regardless of grain size, in conflict with theory and observations. In this project, they took a tiered risk approach to incorporate microstructure and its resultant length scales in mechanical response simulations. Techniques considered include low-risk, low-benefit methods, as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response model with a local length-scale parameter, a power-law hardening rate gradient near grain boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These techniques were validated on a variety of systems for which theoretical analyses and/or experimental data exist. The results may be used to generate improved constitutive models that explicitly depend upon microstructure and to provide insight into microstructural deformation and failure processes. Furthermore, because mechanical state drives microstructural evolution, a strain-enhanced grain growth model was coupled with the mechanical response simulations. The coupled model predicts both properties as a function of microstructure and microstructural development as a function of processing conditions.
Abstract not provided.