Ashbaugh, Henry S.; Asthagiri, Dilipkumar; Beck, Thomas L.; Rempe, Susan R.
Lawrence Pratt’s career following completion of his Ph.D. at the University of Illinois Urbana Champaign has taken him from Harvard University, to the University of California, Berkeley, and Los Alamos National Laboratory. Most recently, he joined the faculty of the Department of Chemical and Biomolecular Engineering at Tulane University in 2008. Over his career Lawrence has been a leader in theoretical physical chemistry, making influential contributions to a number of areas including the theory of the hydrophobic effect, the development of transition path sampling, contributions to orbital free density functional theory, and the theory of liquids and solutions.
Rempe, Susan R.; Vangordon, Monika R.; Prignano, Lindsey A.; Dempski, Robert E.; Rick, Steven W.
Channelrhodopsins (ChR) are light-sensitive cation channels used in optogenetics, a technique that applies light to control cells (e.g., neurons) that have been modified genetically to express those channels. Although mutations are known to affect pore kinetics, little is known about how mutations induce changes at the molecular scale. To address this issue, we first measured channel opening and closing rates of a ChR chimera (C1C2) and selected variants (N297D, N297V, and V125L). Then, we used atomistic simulations to correlate those rates with changes in pore structure, hydration, and chemical interactions among key gating residues of C1C2 in both closed and open states. Overall, the experimental results show that C1C2 and its mutants do not behave like ChR2 or its analogous variants, except V125L, making C1C2 a unique channel. Our atomistic simulations confirmed that opening of the channel and initial hydration of the gating regions between helices I, II, III, and VII of the channel occurs with 1) the presence of 13-cis retinal; 2) deprotonation of a glutamic acid gating residue, E129; and 3) subsequent weakening of the central gate hydrogen bond between the same glutamic acid E129 and asparagine N297 in the central region of the pore. Also, an aspartate (D292) is the unambiguous primary proton acceptor for the retinal Schiff base in the hydrated channel.
Electrodialysis (ED) desalination performance of different conventional and laboratoryscale ion exchange membranes (IEMs) has been evaluated by many researchers, but most of these studies used their own sets of experimental parameters such as feed solution compositions and concentrations, superficial velocities of the process streams (diluate, concentrate, and electrode rinse), applied electrical voltages, and types of IEMs. Thus, direct comparison of ED desalination performance of different IEMs is virtually impossible. While the use of different conventional IEMs in ED has been reported, the use of bioinspired ion exchange membrane has not been reported yet. The goal of this study was to evaluate the ED desalination performance differences between novel laboratory-scale bioinspired IEM and conventional IEMs by determining (i) limiting current density, (ii) current density, (iii) current efficiency, (iv) salinity reduction in diluate stream, (v) normalized specific energy consumption, and (vi) water flux by osmosis as a function of (a) initial concentration of NaCl feed solution (diluate and concentrate streams), (b) superficial velocity of feed solution, and (c) applied stack voltage per cell-pair of membranes. A laboratory-scale single stage batchrecycle electrodialysis experimental apparatus was assembled with five cell-pairs of IEMs with an active cross-sectional area of 7.84 cm2. In this study, seven combinations of IEMs (commercial and laboratory-made) were compared: (i) Neosepta AMX/CMX, (ii) PCA PCSA/PCSK, (iii) Fujifilm Type 1 AEM/CEM, (iv) SUEZ AR204SZRA/CR67HMR, (v) Ralex AMH-PES/CMH-PES, (vi) Neosepta AMX/Bare Polycarbonate membrane (Polycarb), and (vii) Neosepta AMX/Sandia novel bioinspired cation exchange membrane (SandiaCEM). ED desalination performance with the Sandia novel bioinspired cation exchange membrane (SandiaCEM) was found to be competitive with commercial Neosepta CMX cation exchange membrane.
Rempe, Susan R.; Cetuk, Hannah; Anishkin, Andriy; Scott, Alison J.; Ernst, Robert K.
The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G-bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G-bacteria, indicating permeation through common porins. Second, we observe substantial intercalation of the more hydrophobic antibiotics, novobiocin, rifampicin, azithromycin, and telithromycin, into relaxed LPS monolayers. These largely repartition back to the subphase with monolayer compression. We find that the hydrophobic area, charge, and dipole all show correlations with both the mole fraction of antibiotic retained in the monolayer at the monolayer-bilayer equivalence pressure and the efficacies of these antibiotics against G-bacteria. Third, amine-rich gentamicin and the cationic antimicrobial peptides polymyxin B and colistin show no hydrophobic insertion but are instead strongly driven into the polar LPS layer by electrostatic interactions in a pressure-independent manner. Their intercalation stably increases the area per molecule (by up to 20%), which indicates massive formation of defects in the LPS layer. These defects support a self-promoted permeation mechanism of these antibiotics through the OM, which explains the high efficacy and specificity of these antimicrobials against G-bacteria.
Umbrella sampling, coupled with a weighted histogram analysis method (US-WHAM), can be used to construct potentials of mean force (PMFs) for studying the complex ion permeation pathways of membrane transport proteins. Despite the widespread use of US-WHAM, obtaining a physically meaningful PMF can be challenging. Here, we provide a protocol to resolve that issue. Then, we apply that protocol to compute a meaningful PMF for sodium ion permeation through channelrhodopsin chimera, C1C2, for illustration.
The interplay of a rapidly changing climate and infectious disease occurrence is emerging as a critical topic, requiring investigation of possible direct, as well as indirect, connections between disease processes and climate-related variation and phenomena. First, we introduce and overview three infectious disease exemplars (dengue, influenza, valley fever) representing different transmission classes (insect-vectored, human-to-human, environmentally-transmitted) to illuminate the complex and significant interplay between climate disease processes, as well as to motivate discussion of how Sandia can transform the field, and change our understanding of climate-driven infectious disease spread. We also review state-of-the-art epidemiological and climate modeling approaches, together with data analytics and machine learning methods, potentially relevant to climate and infectious disease studies. We synthesize the modeling and disease exemplars information, suggesting initial avenues for research and development (R&D) in this area, and propose potential sponsors for this work. Whether directly or indirectly, it is certain that a rapidly changing climate will alter global disease burden. The trajectory of climate change is an important control on this burden, from local, to regional and global scales. The efforts proposed herein respond to the National Research Councils call for the creation of a multidisciplinary institute that would address critical aspects of these interlocking, cascading crises.
Rempe, Susan R.; Lubkowski, Jacek; Vanegas, Juan; Chan, Wai K.; Lorenzi, Philip L.; Weinstein, John N.; Sukharev, Sergei; Fushman, David; Anishkin, Andriy; Wlodawer, Alexander
Two bacterial type II l-asparaginases, from Escherichia coli and Dickeya chrysanthemi, have played a critical role for more than 40 years as therapeutic agents against juvenile leukemias and lymphomas. Despite a long history of successful pharmacological applications and the apparent simplicity of the catalytic reaction, controversies still exist regarding major steps of the mechanism. In this report, we provide a detailed description of the reaction catalyzed by E. coli type II l-asparaginase (EcAII). Our model was developed on the basis of new structural and biochemical experiments combined with previously published data. The proposed mechanism is supported by quantum chemistry calculations based on density functional theory. We provide strong evidence that EcAII catalyzes the reaction according to the double-displacement (ping-pong) mechanism, with formation of a covalent intermediate. Several steps of catalysis by EcAII are unique when compared to reactions catalyzed by other known hydrolytic enzymes. Here, the reaction is initiated by a weak nucleophile, threonine, without direct assistance of a general base, although a distant general base is identified. Furthermore, tetrahedral intermediates formed during the catalytic process are stabilized by a never previously described motif. Although the scheme of the catalytic mechanism was developed only on the basis of data obtained from EcAII and its variants, this novel mechanism of enzymatic hydrolysis could potentially apply to most (and possibly all) l-asparaginases.
Rempe, Susan R.; Chaudhari, Mangesh I.; Vanegas, Juan M.; Pratt, L.R.; Muralidharan, Ajay
Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.
Rempe, Susan R.; Maldonado, Alex M.; Basdogan, Yasemin; Berryman, Joshua T.; Keith, John A.
Mixed solvents (i.e., binary or higher order mixtures of ionic or nonionic liquids) play crucial roles in chemical syntheses, separations, and electrochemical devices because they can be tuned for specific reactions and applications. Apart from fully explicit solvation treatments that can be difficult to parameterize or computationally expensive, there is currently no well-established first-principles regimen for reliably modeling atomic-scale chemistry in mixed solvent environments. We offer our perspective on how this process could be achieved in the near future as mixed solvent systems become more explored using theoretical and computational chemistry. We first outline what makes mixed solvent systems far more complex compared to single-component solvents. An overview of current and promising techniques for modeling mixed solvent environments is provided. We focus on so-called hybrid solvation treatments such as the conductor-like screening model for real solvents and the reference interaction site model, which are far less computationally demanding than explicit simulations. We also propose that cluster-continuum approaches rooted in physically rigorous quasi-chemical theory provide a robust, yet practical, route for studying chemical processes in mixed solvents.
Rempe, Susan R.; Basdogan, Yasemin; Groenenboom, Mitchell C.; Henderson, Ethan; De, Sandip; Keith, John A.
Molecular-level understanding and characterization of solvation environments are often needed across chemistry, biology, and engineering. Toward practical modeling of local solvation effects of any solute in any solvent, we report a static and all-quantum mechanics-based cluster-continuum approach for calculating single-ion solvation free energies. This approach uses a global optimization procedure to identify low-energy molecular clusters with different numbers of explicit solvent molecules and then employs the smooth overlap for atomic positions learning kernel to quantify the similarity between different low-energy solute environments. From these data, we use sketch maps, a nonlinear dimensionality reduction algorithm, to obtain a two-dimensional visual representation of the similarity between solute environments in differently sized microsolvated clusters. After testing this approach on different ions having charges 2+, 1+, 1-, and 2-, we find that the solvation environment around each ion can be seen to usually become more similar in hand with its calculated single-ion solvation free energy. Without needing either dynamics simulations or an a priori knowledge of local solvation structure of the ions, this approach can be used to calculate solvation free energies within 5% of experimental measurements for most cases, and it should be transferable for the study of other systems where dynamics simulations are not easily carried out.
Rempe, Susan R.; Muralidharan, A.; Pratt, L.R.; Chaudhari, M.I.
Anion hydration is complicated by H-bond between neighboring water molecules in addition to H-bond donation to the anion. This situation leads to competing structures and anharmonic vibrations for simple clusters like (H2O)nCl-. This study applies quasi-chemical theory to study anion hydration and exploits dynamics calculations on isolated clusters to account for anharmonicity. Comparing singly hydrated halide clusters, classic H-bond donation to the anion occurs for F-, while Cl- clusters exhibit flexible dipole-dominated interactions. The predicted Cl- – F- hydration free energy difference agrees with experiment, a significant theoretical step for addressing issues like Hofmeister ranking and selectivity in ion channels.
EmrE is a small, homodimeric membrane transporter that exploits the established pH gradient across the E. coli inner membrane to export polyaromatic cations that might otherwise inhibit cellular growth. While herculean efforts through experimental studies have established many fundamental facts about the specificity and rate of substrate transport in EmrE, the low resolution of the available structures have hampered efforts to tie those findings to the EmrE coupling mechanism between proton and small molecule substrates. Here we present a full three-dimensional structure of EmrE optimized against available cyro-EM data to delineate the critical interactions by which EmrE regulates its conformation. We use the generated structural model to conduct equilibrium and nonequilibrium molecular dynamics simulations to probe EmrE dynamics under different substrate loading states, representing different states in the transport cycle. The model is stable under extended simulation, and reveals that water dynamics within the EmrE lumen change substantially with the loading state. The water dynamics cause hydrogen bonding networks to shift radically when the protonation states change for a pair of solvent-exposed glutamate residues (E14) within the lumen of the transporter, which are proposed to act as proton binding sites during the transport cycle. One specific hydrogen bond from a tyrosine (Y60) of one monomer to a glutamate (E14) on the opposite monomer is especially critical, as it locks the protein conformation when the glutamate is deprotonated. Furthermore, the hydrogen bond provided by Y60 lowers the pKa of the interacting glutamate relative to its partner on the opposite monomer such that it will protonate second, establishing the need for both glutamates to be protonated for the hydrogen bond to break and a substrate-free transition to take place.