Identification of the binding mode of diethyl p-nitrophenyl phosphate to phosphotriesterase
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Communications
The limited flux and selectivities of current carbon dioxide membranes and the high costs associated with conventional absorption-based CO2 sequestration call for alternative CO2 separation approaches. Here we describe an enzymatically active, ultra-thin, biomimetic membrane enabling CO2 capture and separation under ambient pressure and temperature conditions. The membrane comprises a ~18-nm-thick close-packed array of 8 nm diameter hydrophilic pores that stabilize water by capillary condensation and precisely accommodate the metalloenzyme carbonic anhydrase (CA). CA catalyzes the rapid interconversion of CO2 and water into carbonic acid. By minimizing diffusional constraints, stabilizing and concentrating CA within the nanopore array to a concentration 10× greater than achievable in solution, our enzymatic liquid membrane separates CO2 at room temperature and atmospheric pressure at a rate of 2600 GPU with CO2/N2 and CO2/H2 selectivities as high as 788 and 1500, respectively, the highest combined flux and selectivity yet reported for ambient condition operation.
Scientific Reports
Li+ transport within a solid electrolyte interphase (SEI) in lithium ion batteries has challenged molecular dynamics (MD) studies due to limited compositional control of that layer. In recent years, experiments and ab initio simulations have identified dilithium ethylene dicarbonate (Li2EDC) as the dominant component of SEI layers. Here, we adopt a parameterized, non-polarizable MD force field for Li2EDC to study transport characteristics of Li+ in this model SEI layer at moderate temperatures over long times. The observed correlations are consistent with recent MD results using a polarizable force field, suggesting that this non-polarizable model is effective for our purposes of investigating Li+ dynamics. Mean-squared displacements distinguish three distinct Li+ transport regimes in EDC-ballistic, trapping, and diffusive. Compared to liquid ethylene carbonate (EC), the nanosecond trapping times in EDC are significantly longer and naturally decrease at higher temperatures. New materials developed for fast-charging Li-ion batteries should have a smaller trapping region. The analyses implemented in this paper can be used for testing transport of Li+ ion in novel battery materials. Non-Gaussian features of van Hove self-correlation functions for Li+ in EDC, along with the mean-squared displacements, are consistent in describing EDC as a glassy material compared with liquid EC. Vibrational modes of Li+ ion, identified by MD, characterize the trapping and are further validated by electronic structure calculations. Some of this work appeared in an extended abstract and has been reproduced with permission from ECS Transactions, 77, 1155-1162 (2017). Copyright 2017, Electrochemical Society, INC.
Journal of Physical Chemistry B
Anthrax toxin consists of a cation channel and two protein factors. Translocation of the anthrax protein factors from endosomal to the cytosolic compartment is a complex process which utilizes the cation channel. An atomically detailed understanding of the function of the anthrax translocation machinery is incomplete. We report atomically detailed simulations of the lethal factor and channel mutants. Kinetic and thermodynamic properties of early events in the translocation process are computed within the Milestoning theory and algorithm. Several mutants of the channel illustrate that long-range electrostatic interactions provide the dominant driving force for translocation. No external energy input is required because the lower pH in the endosome relative to the cytosol drives the initial translocation process forward. Channel mutants with variable sizes cause smaller effects on translocation events relative to charge manipulations. Comparison with available experimental data is provided.
Proceedings of the National Academy of Sciences of the United States of America
EmrE is a small, homodimeric membrane transporter that exploits the established electrochemical proton gradient across the Escherichia coli inner membrane to export toxic polyaromatic cations, prototypical of the wider small-multidrug resistance transporter family. While prior studies have established many fundamental aspects of the specificity and rate of substrate transport in EmrE, low resolution of available structures has hampered identification of the transport coupling mechanism. Here we present a complete, refined atomic structure of EmrE optimized against available cryo-electron microscopy (cryo-EM) data to delineate the critical interactions by which EmrE regulates its conformation during the transport process. With the model, we conduct molecular dynamics simulations of the transporter in explicit membranes to probe EmrE dynamics under different substrate loading and conformational states, representing different intermediates in the transport cycle. The refined model is stable under extended simulation. The water dynamics in simulation indicate that the hydrogen-bonding networks around a pair of solvent-exposed glutamate residues (E14) depend on the loading state of EmrE. One specific hydrogen bond from a tyrosine (Y60) on one monomer to a glutamate (E14) on the opposite monomer is especially critical, as it locks the protein conformation when the glutamate is deprotonated. The hydrogen bond provided by Y60 lowers the pKa of one glutamate relative to the other, suggesting both glutamates should be protonated for the hydrogen bond to break and a substrate-free transition to take place. These findings establish the molecular mechanism for the coupling between proton transfer reactions and protein conformation in this proton-coupled secondary transporter.
Abstract not provided.
Abstract not provided.
ChemSusChem
Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work.
Journal of Physical Chemistry B
The role that van der Waals (vdW) attractive forces play in the hydration and association of atomic hydrophobic solutes such as argon (Ar) in water is reanalyzed using the local molecular field (LMF) theory of those interactions. In this problem, solute vdW attractive forces can reduce or mask hydrophobic interactions as measured by contact peak heights of the ArAr correlation function compared to reference results for purely repulsive core solutes. Nevertheless, both systems exhibit a characteristic hydrophobic inverse temperature behavior in which hydrophobic association becomes stronger with increasing temperature through a moderate temperature range. The new theoretical approximation obtained here is remarkably simple and faithful to the statistical mechanical LMF assessment of the necessary force balance. Our results extend and significantly revise approximations made in a recent application of the LMF approach to this problem and, unexpectedly, support a theory of nearly 40 years ago.
Journal of Chemical Physics
Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γt, observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γt. But the corresponding analysis of the solventberg Li+H2O4 does conform to the standard picture set by all the PF6- results.
Abstract not provided.
Abstract not provided.
Topics in Current Chemistry
Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li+ deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li+ ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li+ thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li+ transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.
Molecular Simulation
Here, we study quasi-chemical theory (QCT) for the free energies of divalent alkaline earth ions (Ba 2+, Sr 2+, Ca 2+, Mg 2+) in water, emphasizing that: (a) interactions between metal ions and proximal water molecules are as strong as traditional chemical effects; (b) QCT builds directly from accessible electronic structure calculations but rests on fully elaborated molecular statistical thermodynamics; (c) QCT offers choices of convenience in identifying coordination numbers for analysis. We investigate utilisation of direct QCT with inner-shell conditioning (Formula presented.), alternative to the traditional nλ=0 conditioning motivated by a generalised van der Waals view. The alternative (Formula presented.) works well: deleterious non-Gaussian effects of van der Waals repulsive interactions are not serious, and the alternative conditioning improves the convenience of QCT calculations. Comparison between ab initio and force field molecular dynamics (AIMD and FFMD) with standard models suggests that FFMD likely exaggerates the anharmonicity in the thermal motion of inner-shell ion-water clusters. Together with the general encouraging support for the harmonic approximations implied by the (Formula presented.) conditioning, that observation helps explain the remarkable success of the cluster-based QCT solution free energies, which do not require assessment of all inner-shell occupancies by simulation.
Chemical Science
Teixobactin (Txb) is a recently discovered antibiotic against Gram-positive bacteria that induces no detectable resistance. The bactericidal mechanism is believed to be the inhibition of cell wall biosynthesis by Txb binding to lipid II and lipid III. Txb binding specificity likely arises from targeting of the shared lipid component, the pyrophosphate moiety. Despite synthesis and functional assessment of numerous chemical analogs of Txb, and consequent identification of the Txb pharmacophore, the detailed structural information of Txb-substrate binding is still lacking. Here, we use molecular modeling and microsecond-scale molecular dynamics simulations to capture the formation of Txb-lipid II complexes at a membrane surface. Two dominant binding conformations were observed, both showing characteristic lipid II phosphate binding by the Txb backbone amides near the C-terminal cyclodepsipeptide (d-Thr8-Ile11) ring. Additionally, binding by Txb also involved the side chain hydroxyl group of Ser7, as well as a secondary phosphate binding provided by the side chain of l-allo-enduracididine. Interestingly, those conformations differ by swapping two groups of hydrogen bond donors that coordinate the two phosphate moieties of lipid II, resulting in opposite orientations of lipid II binding. In addition, residues d-allo-Ile5 and Ile6 serve as the membrane anchors in both Txb conformations, regardless of the detailed phosphate binding interactions near the cyclodepsipeptide ring. The role of hydrophobic residues in Txb activity is primarily for its membrane insertion, and subsidiarily to provide non-polar interactions with the lipid II tail. Based on the Txb-lipid II interactions captured in their complexes, as well as their partitioning depths into the membrane, we propose that the bactericidal mechanism of Txb is to arrest cell wall synthesis by selectively inhibiting the transglycosylation of peptidoglycan, while possibly leaving the transpeptidation step unaffected. The observed "pyrophosphate caging" mechanism of lipid II inhibition appears to be similar to some lantibiotics, but different from that of vancomycin or bacitracin.
RSC Advances
This work demonstrates that the ionic selectivity and ionic conductivity of nanoporous membranes can be controlled independently via layer-by-layer (LbL) deposition of polyelectrolytes and subsequent selective cross-linking of these polymer layers. LbL deposition offers a scalable, inexpensive method to tune the ion transport properties of nanoporous membranes by sequentially dip coating layers of cationic polyethyleneimine and anionic poly(acrylic acid) onto polycarbonate membranes. The cationic and anionic polymers are self-assembled through electrostatic and hydrogen bonding interactions and are chemically crosslinked to both change the charge distribution and improve the intermolecular integrity of the deposited films. Both the thickness of the deposited coating and the use of chemical cross-linking agents influence charge transport properties significantly. Increased polyelectrolyte thickness increases the selectivity for cationic transport through the membranes while adding polyelectrolyte films decreases the ionic conductivity compared to an uncoated membrane. Once the nanopores are filled, no additional decrease in conductivity is observed with increasing film thickness and, upon cross-linking, a portion of the lost conductivity is recovered. The cross-linking agent also influences the ionic selectivity of the resulting polyelectrolyte membranes. Increased selectivity for cationic transport occurs when using glutaraldehyde as the cross-linking agent, as expected due to the selective cross-linking of primary amines that decreases the net positive charge. Together, these results inform deposition of chemically robust, highly conductive, ion-selective membranes onto inexpensive porous supports for applications ranging from energy storage to water purification.
Abstract not provided.
Journal of Chemical Physics
We use ab initio molecular dynamics (AIMD) calculations and quasi-chemical theory (QCT) to study the inner-shell structure of F-(aq) and to evaluate that single-ion free energy under standard conditions. Following the "no split occupancies" rule, QCT calculations yield a free energy value of -101 kcal/mol under these conditions, in encouraging agreement with tabulated values (-111 kcal/mol). The AIMD calculations served only to guide the definition of an effective inner-shell constraint. QCT naturally includes quantum mechanical effects that can be concerning in more primitive calculations, including electronic polarizability and induction, electron density transfer, electron correlation, molecular/atomic cooperative interactions generally, molecular flexibility, and zero-point motion. No direct assessment of the contribution of dispersion contributions to the internal energies has been attempted here, however. We anticipate that other aqueous halide ions might be treated successfully with QCT, provided that the structure of the underlying statistical mechanical theory is absorbed, i.e., that the "no split occupancies" rule is recognized.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We recently developed an enzymatically active, ultra-thin, nano-stabilized liquid membrane for CO2 separation from a mixture of gases, which was recognized by an international R&D 100 Award in 2015. The separation membrane is an approximately 18-nm thick water layer stabilized by capillary condensation within a hydrophilic mesoporous silica film and embedded with the metallo-enzyme carbonic anhydrase. The enzyme speeds CO2 uptake and release from the membrane by catalyzing the rapid inter-conversion of carbon dioxide and water to bicarbonate and a proton. The membrane separates CO2 from 1:1 gas mixtures at a rate of 2600 GPU with CO2/N2 and CO2/H2 selectivities exceeding 788 and 1500, the highest combined flux and selectivity yet reported. That membrane performance exceeds, for the first time, the U.S. Department of Energy standards for CO2 capture technology. CO2 flux depends sensitively on nanopore surface chemistry in the active region. To understand that dependence, we applied molecular simulations to interrogate enzyme behavior in the presence of varied surface chemistries. The results indicate that a polar surface chemistry within the membrane nanopores prevents aggregation of enzymes that would otherwise occur in both bulk liquid solution and non-polar nanopores. Additionally, the enzyme active site maintains a stable structure, even when the overall protein structure deforms within the nanopores. In summary, confinement in the ultra-thin layer of water within mesoporous silica nanopores facilitates a 15x higher enzyme concentration than in bulk conditions, without affecting the structure of the enzyme active site, when the nanopore surfaces are covered with polar functional groups. Thus, confinement of the carbonic enzymes in the membrane water-filled nanopores facilitates higher rates of CO2 uptake and release than achievable in bulk solutions.