Tuning ion coordination preferences to enable selective permeation:supplemental information
Proposed for publication in Nature.
Abstract not provided.
Proposed for publication in Nature.
Abstract not provided.
Proposed for publication in Nature.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Chemistry Chemical Physics (PCCP).
We investigate the liquid structure, ion hydration, and some thermodynamic properties associated with the rigid geometry approximation to water by applying ab initio molecular dynamics simulations (AIMD) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional at T = 320 K. We vary the rigid water geometry in order to locate a class of practical water models that yield reasonable liquid structure and dynamics, and to examine the progression of AIMD-predicted water behavior as the OH bond length varies. Water constrained at the optimal PBE gas phase geometry yields reasonable pair correlation functions. The predicted liquid phase pressure, however, is large ({approx}8.0 kbar). Although the O-H bond in water should elongate when transferred from gas to the condensed phase, when it is constrained to 0.02, or even just 0.01 {angstrom} longer than the optimal gas phase value, liquid water is predicted to be substantially overstructured compared to experiments. Zero temperature calculations of the thermodynamic properties of cubic ice underscore the sensitivity toward small variations in the O-H bond length. We examine the hydration structures of potassium, chloride, and formate ions in one rigid PBE water model. The results are in reasonable agreement with unconstrained AIMD simulations.
Proposed for publication in the Journal of the American Chemical Society.
We apply density functional theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew?Burke?Ernzerhof exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an electronvolt. The DFT+U technique, parametrized to B3LYP-predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than that of PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP and 0.1 {angstrom} changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first-row transition metal ion complexes in a condensed-matter setting.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of the American Chemical Society.
Abstract not provided.
Proposed for publication in Chemical Physical Letters.
Abstract not provided.
Proposed for publication in Journal of the American Chemical Society.
Abstract not provided.
This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.
This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model.