Publications

Results 26–50 of 84

Search results

Jump to search filters

Exploration of Two-Dimensional Materials for Remote Sensing Applications

Banz, James A.; Ruiz, Isaac R.; Howell, Stephen W.; Gao, Shiyuan; Thomas, Michael L.; Duree, Jessica M.

Two-dimensional materials were explored through collaboration with Steve Howell and Catalyn Spataru, led by James Bartz during FY15 and FY16 at Sandia National Laboratories. Because of their two-dimensional nature, these materials may offer properties exceeding those of bulk materials. This work involved Density Functional Theory simulations and optical methods, instrumentation development, materials growth and materials characterization. Through simulation the wide variety of two dimensional materials was down-selected for fabrication and testing. Out of the two dimensional semiconductors studied, black phosphorus bilayers showed the strongest spectral absorption tuning with applied electric field. Laser scanning confocal microscopy, spectroscopy and atomic force microscopy allowed for identification of micron scale samples. A technique involving conductive tip atomic force microscopy and back-side illumination was developed simple assembly and characterization of material spectral response.

More Details

Self-Heating and Failure in Scalable Graphene Devices

Scientific Reports

Laros, James H.; Shaffer, Ryan A.; McDonald, Anthony E.; Hamilton, Allister B.; Nogan, John N.; Ohta, Taisuke O.; Howell, Stephen W.

Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. Morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.

More Details

Oxidation of ultrathin GaSe

Applied Physics Letters

Laros, James H.; McDonald, Anthony E.; Ohta, Taisuke O.; Howell, Stephen W.; Spataru, Dan C.; Kalugin, Nikolai G.

Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

More Details

New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors

Harrison, Richard K.; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh C.; Howell, Stephen W.

We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

More Details

Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

Journal of Materials Research

Friedman, Caitlin R.; Limmer, Steven J.; Howell, Stephen W.; Laros, James H.; Siegal, Michael P.

Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO3 layer. The WO3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grown by thermal chemical vapor deposition, with W also serving as a back electrical contact. Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.

More Details

Application of plasmonic subwavelength structuring to enhance infrared detection

Proceedings of SPIE - The International Society for Optical Engineering

Davids, Paul D.; Kim, Jin K.; Leonhardt, Darin L.; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke O.; Wendt, J.R.; Montoya, John A.

Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.

More Details
Results 26–50 of 84
Results 26–50 of 84