Publications

Results 26–42 of 42

Search results

Jump to search filters

III-Nitride ultra-wide-bandgap electronic devices

Semiconductors and Semimetals

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Baca, Albert G.; Crawford, Mary H.; Dickerson, Jeramy; Douglas, Erica A.; Fischer, Arthur J.; Klein, Brianna A.; Reza, Shahed

This chapter discusses the motivation for the use of Ultra-Wide-Bandgap Aluminum Gallium Nitride semiconductors for power switching and radio-frequency applications. A review of the relevant figures of merit for both vertical and lateral power switching devices, as well as lateral radio-frequency devices, is presented, demonstrating the potential superior performance of these devices relative to Gallium Nitride. Additionally, representative results from the literature for each device type are reviewed, highlighting recent progress as well as areas for further research.

More Details

Selection of a nominal device using functional data analysis

Proceedings 2018 IEEE 5th International Conference on Data Science and Advanced Analytics Dsaa 2018

Martin, Nevin S.; Buchheit, Thomas E.; Reza, Shahed

Nominal behavior selection of an electronic device from a measured dataset is often difficult. Device characteristics are rarely monotonic and choosing the single device measurement which best represents the center of a distribution across all regions of operation is neither obvious nor easy to interpret. Often, a device modeler uses a degree of subjectivity when selecting nominal device behavior from a dataset of measurements on a group of devices. This paper proposes applying a functional data approach to estimate the mean and nominal device of an experimental dataset. This approach was applied to a dataset of electrical measurements on a set of commercially available Zener diodes and proved to more accurately represent the average device characteristics than a point-wise calculation of the mean. It also enabled an objective method for selecting a nominal device from a dataset of device measurements taken across the full operating region of the Zener diode.

More Details

Selection of a nominal device using functional data analysis

Proceedings - 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018

Martin, Nevin S.; Buchheit, Thomas E.; Reza, Shahed

Nominal behavior selection of an electronic device from a measured dataset is often difficult. Device characteristics are rarely monotonic and choosing the single device measurement which best represents the center of a distribution across all regions of operation is neither obvious nor easy to interpret. Often, a device modeler uses a degree of subjectivity when selecting nominal device behavior from a dataset of measurements on a group of devices. This paper proposes applying a functional data approach to estimate the mean and nominal device of an experimental dataset. This approach was applied to a dataset of electrical measurements on a set of commercially available Zener diodes and proved to more accurately represent the average device characteristics than a point-wise calculation of the mean. It also enabled an objective method for selecting a nominal device from a dataset of device measurements taken across the full operating region of the Zener diode.

More Details

Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization

Buchheit, Thomas E.; Wilcox, Ian Z.; Sandoval, Andrew J.; Reza, Shahed

This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction and portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.

More Details

Evaluation of a 'Field Cage' for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown into the kV Regime

IEEE Transactions on Electron Devices

Tierney, Brian D.; Dickerson, Jeramy; Reza, Shahed; Kaplar, Robert; Baca, Albert G.; Marinella, Matthew

A distributed impedance 'field cage' structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dVds/dt = 100 V/ns. For both dc and transient results, the voltage between the gate and drain is laterally distributed, ensuring that the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving the breakdown voltage scalability to a few kilovolts.

More Details

Ohmic contacts to Al-rich AlGaN heterostructures

Physica Status Solidi (A) Applications and Materials Science

Douglas, Erica A.; Reza, Shahed; Sanchez, Carlos A.; Allerman, A.A.; Klein, Brianna A.; Armstrong, Andrew A.; Kaplar, Robert; Baca, Albert G.; Koleske, Daniel

Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.

More Details
Results 26–42 of 42
Results 26–42 of 42