Publications

Results 151–200 of 201

Search results

Jump to search filters

Near-Infrared Strong Coupling between Metamaterials and Epsilon-near-Zero Modes in Degenerately Doped Semiconductor Nanolayers

ACS Photonics

Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon A.; Luk, Ting S.

Epsilon-near-zero (ENZ) modes provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes. In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. This approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.

More Details

Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

Journal of the Optical Society of America B: Optical Physics

Campione, Salvatore; Capolino, Filippo

We investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observe two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.

More Details

Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis

Progress In Electromagnetics Research C

Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Hudson, H.G.; Langston, William L.

In this paper we report on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. However, this is not always the case, and a cable with multiple shields may perform similar to or in some cases worse than a cable with a single shield. We want to shed more light on these situations, which represent the main focus of this paper.

More Details

Epsilon-near-zero modes for tailored light-matter interaction

Physical Review Applied

Campione, Salvatore; Liu, Sheng; Benz, Alexander; Klem, John F.; Sinclair, Michael B.; Brener, Igal

Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximize the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. This design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.

More Details

Optical properties of transiently-excited semiconductor hyperbolic metamaterials

Optical Materials Express

Campione, Salvatore; Luk, Ting S.; Liu, Sheng; Sinclair, Michael B.

Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similar range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Lastly, we discuss the onset of negative refraction in the photopumped state.

More Details

Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control

Nano Letters

Chong, Katie E.; Staude, Isabelle; James, Anthony R.; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S.; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2 phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

More Details

Tailored light-matter interaction through epsilon-near-zero modes

Conference on Lasers and Electro-Optics Europe - Technical Digest

Campione, Salvatore; Liu, Sheng; Benz, Alexander; Klem, John F.; Sinclair, Michael B.; Brener, Igal

We use epsilon-near-zero modes in semiconductor nanolayers to design a system whose spectral properties are controlled by their interaction with multi-dipole resonances. This design flexibility renders our platform attractive for efficient nonlinear composite materials.

More Details

Phased-array sources based on nonlinear metamaterial nanocavities

Nature Communications

Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

More Details

Tailored light-matter interaction through epsilon-near- zero modes

CLEO: QELS - Fundamental Science, CLEO_QELS 2015

Campione, Salvatore; Liu, Sheng; Benz, Alexander; Klem, John F.; Sinclair, Michael B.; Brener, Igal

We use epsilon-near-zero modes in semiconductor nanolayers to design a system whose spectral properties are controlled by their interaction with multi-dipole resonances. This design flexibility renders our platform attractive for efficient nonlinear composite materials. © OSA 2015.

More Details

Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films

Applied Physics Letters

Luk, Ting S.; De Ceglia, Domenico; Liu, Sheng; Keeler, Gordon A.; Prasankumar, Rohit P.; Vincenti, Maria A.; Scalora, Michael; Sinclair, Michael B.; Campione, Salvatore

We experimentally demonstrate efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10-6 is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

More Details

Control of strong light-matter coupling using the capacitance of metamaterial nanocavities

Nano Letters

Benz, Alexander; Campione, Salvatore; Klem, John F.; Sinclair, Michael B.; Brener, Igal

Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. This collocation and interaction often leads to strong coupling. Here, we present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. The system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

More Details

What is an epsilon-near-zero mode?

Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015

Campione, Salvatore; Brener, Igal; Marquier, Francois

Metallic films much thinner than the skin depth can support surface plasmon modes whose dispersion approaches the plasma frequency, giving rise to the so-called epsilon-near-zero mode. We analyse its features and observation conditions. © 2015 OSA.

More Details

Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials

Journal of the Optical Society of America B: Optical Physics

Campione, Salvatore; Liu, Sheng; Luk, Ting S.; Sinclair, Michael B.

We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. In addition, SHMs allow for new phenomena such as ultrafast creation of the hyperbolic manifold through optical pumping. In particular, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.

More Details

Optical properties of transiently-excited semiconductor hyperbolic metamaterials

Optical Materials Express

Campione, Salvatore; Luk, Ting S.; Liu, Sheng; Sinclair, Michael B.

Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similar range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Finally, we discuss the onset of negative refraction in the photopumped state.

More Details

Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

ACS Photonics

Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, A.A.; Wendt, Joel R.; Brener, Igal

(Figure Presented) We present the design, realization, and characterization of optical strong light-matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light-matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ∼0.8 eV (λ ∼1.55 μm) and a planar "dogbone" metamaterial structure. As the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. This strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

More Details

Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

Optics Express

Cruz-Campa, Jose L.; Frank, Ian W.; Campione, Salvatore; Fofang, Nche T.

We demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties. © 2014 Optical Society of America.

More Details

Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells

Applied Physics Letters

Campione, Salvatore; Benz, Alexander; Sinclair, Michael B.; Brener, Igal

We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at ∼30THz and an orthogonally polarized resonance at the second harmonic frequency (∼60THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be ∼1.3×10-2 W/W2 - a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10μm). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs. © 2014 AIP Publishing LLC.

More Details

Gallium nitride nanowire distributed feedback lasers

Conference on Lasers and Electro-Optics Europe - Technical Digest

Wright, Jeremy B.; Campione, Salvatore; Liu, Sheng; Martinez, Julio A.; Xu, Huiwen; Luk, Ting S.; Li, Qiming; Wang, George T.; Swartzentruber, Brian; Brener, Igal

We have demonstrated single-mode lasing in a single gallium nitride nanowire using distributed feedback by external coupling to a dielectric grating. By adjusting the nanowire grating alignment we achieved a mode suppression ratio of 17dB.

More Details
Results 151–200 of 201
Results 151–200 of 201