Interim dry storage of spent nuclear fuel involves storing the fuel in welded stainless-steel canisters. Under certain conditions, the canisters could be subjected to environments that may promote stress corrosion cracking leading to a risk of breach and release of aerosol-sized particulate from the interior of the canister to the external environment through the crack. Research is currently under way by several laboratories to better understand the formation and propagation of stress corrosion cracks, however little work has been done to quantitatively assess the potential aerosol release. The purpose of the present work is to introduce a reliable generic numerical model for prediction of aerosol transport, deposition, and plugging in leak paths similar to stress corrosion cracks, while accounting for potential plugging from particle deposition. The model is dynamic (changing leak path geometry due to plugging) and it relies on the numerical solution of the aerosol transport equation in one dimension using finite differences. The model’s capabilities were also incorporated into a Graphical User Interface (GUI) that was developed to enhance user accessibility. Model validation efforts presented in this paper compare the model’s predictions with recent experimental data from Sandia National Laboratories (SNL) and results available in literature. We expect this model to improve the accuracy of consequence assessments and reduce the uncertainty of radiological consequence estimations in the remote event of a through-wall breach in dry cask storage systems.
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents fiscal year 2023 (FY23) updates on the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. In FY23, a series of four simulated commercial drying tests was completed. This report presents the temperature and pressure histories of the drying tests as well as axial temperature profiles that can be compared to data from the Electric Power Research Institute (EPRI) High Burnup Demonstration TN-32B cask. Water content measurements and dew point calculations from a Hiden Analytical HPR-30 mass spectrometer are also presented in this report. Due to familiarization with this first-of-a-kind system, refinements to equipment calibration and test procedures have been identified to better match commercial drying cycles for future simulated tests. However, the presented data demonstrate the successful construction and operation of a viable research platform for quantifying residual water content closely approaching that expected in dry storage canisters during commercial drying procedures.
The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using higher backfill pressures in the canister, up to approximately 800 kPa, compared to their horizontal counterparts. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to add to previous testing that characterized SCCs under well-controlled boundary conditions through the inclusion of testing improvements that establish initial conditions in a more consistent way. While the engineered microchannel has dimensions similar to actual SCCs, it does not reproduce the tortuous path the aerosol laden flow would have to traverse for eventual transmission. SCCs can be rapidly grown in a laboratory setting given the right conditions, and initial characterization and clean-flow testing has begun on lab grown crack samples provided to Sandia National Laboratories (SNL). Many such samples are required to produce statistically relevant transmission results, and SNL is developing a procedure to produce samples in welded steel plates. These ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.
This report updates the high-level test plan for evaluating surface deposition on three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUTECH Horizontal Modular Storage (NUHOMS) Advanced Horizontal Storage Modules (AHSMs) from Orano (formerly Transnuclear Inc.) and provides a summary of the surface sampling activities that have been conducted to date. The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or requirements. One goal of this testing is to collect defensible and detailed dust deposition measurements from the surface of dry storage canisters in a marine coastal environment to guide chloride-induced stress corrosion cracking (CISCC) research. Another goal is to provide data for the validation of computational fluid dynamics (CFD) based deposition modeling. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the decay heat and thermal hydraulic environment. Test and heater design is supported by detailed CFD modeling. Instrumentation throughout the canister, storage module, and environment will provide extensive information about the thermal-hydraulic behavior of horizontal dry cask storage systems. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer detailed quantification and composition of the deposited particulates from a realistic storage environment. Discussions of a potential host site for the Canister Deposition Field Demonstration (CDFD) are ongoing. Until a host site is chosen, testing of key CDFD hardware components including the heater assemblies, power skid, and remote data acquisition system will continue. Functional testing of the finalized heater assemblies and test apparatus started this fiscal year. These initial heater tests have shown the assemblies are performing within design specifications. Staged surface sampling of a mockup of a canister outside the AHSM on a transfer skid was also performed. Refinements to the sampling procedures and techniques were captured from observation of these activities and lessons-learned debriefs. These updated sampling procedures and techniques are planned to be tested again in the field using the mockup in order to assure personnel are using the most accurate and repeatable methods possible prior to deployment for actual CDFD testing.
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents a new test apparatus, the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. This report describes the ADCS vessel build that was completed late in FY22, including the receipt of the prototypic length waterproof heater rods and construction of the fuel basket and the pressure vessel components. In addition, installations of thermocouples, emissivity coupons, pressure and vacuum lines, pressure transducers, and electrical connections were completed. Preliminary power functionality testing was conducted to demonstrate the capabilities of the ADCS. In FY23, a test plan for the ADCS will be developed to implement a drying procedure based on measurements from the process used for the High Burnup Demonstration Project. While applying power to the simulated fuel rods, this procedure is expected to consist of filling the ADCS vessel with water, draining the water with applied pressure and multiple helium blowdowns, evacuating additional water with a vacuum drying sequence at successively lower pressures, and backfilling the vessel with helium. Additional investigations are expected to feature failed fuel rod simulators with engineered cladding defects and guide tubes with obstructed dashpots to challenge the drying system with multiple water retention sites.
The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using more significant backfill pressures in the canister, up to approximately 800 kPa. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to add to previous testing that characterized SCCs under well-controlled boundary conditions through the inclusion of testing improvements that establish initial conditions in a more consistent way. These ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.
This report updates the high-level test plan for evaluating surface deposition on three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUTECH Horizontal Modular Storage (NUHOMS) Advanced Horizontal Storage Modules (AHSMs) from Orano (formerly Transnuclear Inc.) and provides a description of the surface characterization activities that have been conducted to date. The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or requirements. The goal of the testing is to collect highly defensible and detailed dust deposition measurements from the surface of dry storage canisters in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the decay heat and thermal hydraulic environment. Test and heater design is supported by detailed computational fluid dynamics modeling. Instrumentation throughout the canister, storage module, and environment will provide extensive information about thermal-hydraulic behavior. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment. Functional testing of the finalized heater assemblies and test apparatus is set to begin in December 2022. The proposed delivery of the canisters to the host test site is June/July 2023, which is well ahead of when the AHSM installations would be completed.
This report describes the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD is primarily a dust deposition test that will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules, with planned exposure testing for up to 10 years at an operating ISFSI site. One canister will be left at ambient condition, unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns for dust analysis will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. The size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Further development of the sampling plan has commenced through three different tasks. First, canister surface roughness, a potentially important parameter for air flow and dust deposition, was characterized at several locations on one of the test canisters. Second, corrosion testing to evaluate the potential lifetime and aging of thermocouple wires, spot welds, and attachments was initiated. Third, hand sampling protocols were developed, and initial testing was carried out. The results of those efforts are presented in this report. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.
The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.
This study presents a method that can be used to gain information relevant to determining the corrosion risk for spent nuclear fuel (SNF) canisters during extended dry storage. Currently, it is known that stainless steel canisters are susceptible to chloride-induced stress corrosion cracking (CISCC). However, the rate of CISCC degradation and the likelihood that it could lead to a through-wall crack is unknown. This study uses well-developed computational fluid dynamics and particle-tracking tools and applies them to SNF storage to determine the rate of deposition on canisters. The deposition rate is determined for a vertical canister system and a horizontal canister system, at various decay heat rates with a uniform particle size distribution, ranging from 0.25 to 25 µm, used as an input. In all cases, most of the dust entering the overpack passed through without depositing. Most of what was retained in the overpack was deposited on overpack surfaces (e.g., inlet and outlet vents); only a small fraction was deposited on the canister itself. These results are provided for generalized canister systems with a generalized input; as such, this technical note is intended to demonstrate the technique. This study is a part of an ongoing effort funded by the U.S. Department of Energy, Nuclear Energy Office of Spent Fuel Waste Science and Technology, which is tasked with doing research relevant to developing a sound technical basis for ensuring the safe extended storage and subsequent transport of SNF. This work is being presented to demonstrate a potentially useful technique for SNF canister vendors, utilities, regulators, and stakeholders to utilize and further develop for their own designs and site-specific studies.
A new small-scale pressure vessel with a 5×5 fuel assembly and axially truncated PWR hardware was created to simulate commercial vacuum drying processes. This test assembly, known as the Dashpot Drying Apparatus, was built to focus on the drying of a single PWR dashpot and surrounding fuel. Drying operations were simulated for three tests with the DDA based on the pressure and temperature histories observed in the HBDP. All three tests were conducted with an empty guide tube. One test was performed with deionized water as the fill fluid. The other two tests used 0.2 M boric acid as the fill fluid to accurately simulate spent fuel pool conditions. These tests proved the capability of the DDA to mimic commercial drying processes on a limited scale and detect the presence of bulk and residual water. Furthermore, for all tests, pressure remained below the 0.4 kPa (3 Torr) rebound threshold for the final evacuation step in the drying procedure. Results indicate that after bulk fluid is removed from the pressure vessel, residual water is verifiably measured through confirmatory measurements of pressure and water content using a mass spectrometer. The final pressure rebound behaviors for the three tests conducted were well below the established regulatory limit of less than 0.4 kPa (3 Torr) within 30 minutes of isolation. The water content measurements across all tests showed that despite observing high water content within the DDA vessel at the beginning of the vacuum isolations, the water content drastically drops to below 1,200 ppmv after the isolations were conducted. The data and operational experience from these tests will guide the next evolution of experiments on a prototypic-length scale with multiple surrogate rods in a full 17×17 PWR assembly. The insight gained through these investigations is expected to support the technical basis for the continued safe storage of spent nuclear fuel into long term operations.
The purpose of this report is to document improvements in the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes.
Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.
The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using relatively high backfill pressures (up to approximately 800 kPa) in the canister to enhance internal natural convection. This pressure differential offers a comparatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.89 mm (0.350 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Modeling efforts were also initiated that evaluate the depletion of aerosols in a commercial dry storage canister. These preliminary modeling and ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.