Geologic Disposal of High Activity Radioactive Waste, Waste Forms, and Waste Streams: Considerations for Disposal
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.
This report presents a comparative analysis of spent nuclear fuel management options to support the U.S. Department of Energy (DOE). Specifically, a set of scenarios was constructed to represent a range of possible combinations of alternative spent fuel management approaches. Analyses were performed to provide simple and credible estimates of relative costs to the U.S. government and to the nuclear utilities for moving forward with each scenario. The analyses of alternatives and options related to spent nuclear fuel management presented in this report are based on technical and programmatic considerations and do not include an evaluation of relevant regulatory and legal considerations (e.g., needs for new or modified regulations or legislation). This report has been prepared for informational and comparison purposes only and should not be construed as a determination of the legal permissibility of specific alternatives and options. No inferences should be drawn from this report regarding future actions by DOE. To the extent this report conflicts with provisions of the Standard Contract, those provisions prevail.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials Chemistry and Physics
Various versions of deep borehole nuclear waste disposal have been proposed in the past in which effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, inefficient consolidation, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. In this study, we showed that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. The present work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. The approach can be applied to modify granites excavated from different geological sites. Several engineered granitic materials have been explored which possess significantly lower processing and densification temperatures than natural granites. Those new materials consolidate more efficiently by viscous flow and accelerated recrystallization without compromising their mechanical integrity and properties.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
MRS Advances
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.
Abstract not provided.
Abstract not provided.
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste
Safety assessments estimate the long-term performance of geological disposal systems for radioactive waste using quantitative models. This paper reviews regulatory standards, selection of scenarios for analysis, the development of computational models and their linkage into a system analysis, and the iterative relationship between site characterization and safety assessment. Uncertainty must be acknowledged and can be accounted for using both conservative deterministic and probabilistic approaches. In addition to generating performance estimates for comparison to regulatory standards, safety assessments can also guide research and model development, evaluate design alternatives, enhance the scientific understanding of the system, and contribute to public acceptance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
The Spent Fuel and Waste Science and Technology Campaign, formerly the Used Fuel Disposition Research and Development Campaign, within the Department of Energy Office of Nuclear Energy identifies alternatives and conducts scientific research and technology development to enable storage, transportation, and disposal of spent nuclear fuel and wastes generated by existing and future nuclear fuel cycles. This paper summarizes the major fiscal year 2016 accomplishments of the spent nuclear fuel storage and transportation part of the campaign. The purpose of the storage and transportation research and development is to support development of the technical basis to inform management and licensing decisions regarding storage and transportation of spent nuclear fuel. Storage research and development focuses on closing technical gaps related to extended storage of spent nuclear fuel, including uncertainties with highburnup spent nuclear fuel cladding performance and long-term canister integrity. Transportation research and development focuses on ensuring transportability of spent nuclear fuel following extended storage, addressing data gaps regarding nuclear fuel integrity, retrievability, and understanding the stresses and strains the fuel experiences during normal conditions of transport. Both of these areas are currently initiating large, multi-year tests, and this paper provides the progress of each. Because the tests are in the initial stages, little data will be presented here; further data will be available as the tests mature. References will be provided in this document for additional background, data, and details.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Elements
For more than three decades, the US Department of Energy has investigated the potential for permanent disposal of high-level radioactive waste and spent nuclear fuel in a deep-mined repository at Yucca Mountain, Nevada (USA). A detailed license application submitted to the US Nuclear Regulatory Commission in 2008 provides full documentation of the case for permanent disposal of nuclear waste in tuff. The aridity of the site and great depth to the water table provide a disposal environment and a design concept unique among deep-mined repositories currently or previously proposed worldwide.
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the future of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015
The United States Department of Energy (DOE) is conducting research and development (R&D) activities within the Used Fuel Disposition Campaign to support the implementation of the DOE's 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. R&D activities focus on storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles and are ongoing at nine national laboratories. Additional relevant R&D is conducted at multiple universities through the DOE's Nuclear Energy University Program. Within the storage and transportation areas, R&D continues to focus on technical gaps related to extended storage and subsequent transportation of UNF. Primary emphasis for FY15 is on experimental and analysis activities that support the DOE s dry cask demonstration confirmatory data project initiated at the North Anna Nuclear Power Plant in Virginia by the Electric Power Research Institute in collaboration with AREVA and Dominion Power. Within the disposal research area, current planning calls for a significant increase in R&D associated with evaluating the feasibility of deep borehole disposal of some waste forms, in addition to a continued emphasis on confirming the viability of generic mined disposal concepts in multiple geologic media. International collaborations that allow the U.S. program to benefit from experience and opportunities for research in other nations remain a high priority.
15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015
Options for disposal of the spent nuclear fuel and high level radioactive waste that are projected to exist in the United States in 2048 were studied. The options included four different disposal concepts: mined repositories in salt, clay/shale rocks, and crystalline rocks; and deep boreholes in crystalline rocks. Some of the results of this study are that all waste forms, with the exception of untreated sodium-bonded spent nuclear fuel, can be disposed of in any of the mined disposal concepts, although with varying degrees of confidence; salt allows for more flexibility in managing high-heat waste in mined repositories than other media; small waste forms are potentially attractive candidates for deep borehole disposal; and disposal of commercial SNF in existing dual-purpose canisters is potentially feasible but could pose significant challenges both in repository operations and in demonstrating confidence in long-term performance. Questions addressed by this study include: is a " 'one-size-fits-all ' repository a good strategic option for disposal?" and "do some disposal concepts perform significantly better with or without specific waste types or forms? " The study provides the bases for answering these questions by evaluating potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This Update to the Used Fuel Disposition Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program, building on work completed in this area since 2009. This implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclearfuel- and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to available funding and progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.
Materials Research Society Symposium Proceedings
Deep boreholes have been proposed for many decades as an option for permanent disposal of high-level radioactive waste and spent nuclear fuel. Disposal concepts are straightforward, and generally call for drilling boreholes to a depth of four to five kilometers (or more) into crystalline basement rocks. Waste is placed in the lower portion of the hole, and the upper several kilometers of the hole are sealed to provide effective isolation from the biosphere. The potential for excellent long-term performance has been recognized in many previous studies. This paper reports updated results of what is believed to be the first quantitative analysis of releases from a hypothetical disposal borehole repository using the same performance assessment methodology applied to mined geologic repositories for high-level radioactive waste. Analyses begin with a preliminary consideration of a comprehensive list of potentially relevant features, events, and processes (FEPs) and the identification of those FEPs that appear to be most likely to affect long-term performance in deep boreholes. The release pathway selected for preliminary performance assessment modeling is thermally-driven flow and radionuclide transport upwards from the emplacement zone through the borehole seals or the surrounding annulus of disturbed rock. Estimated radionuclide releases from deep borehole disposal of spent nuclear fuel, and the annual radiation doses to hypothetical future humans associated with those releases, are extremely small, indicating that deep boreholes may be a viable alternative to mined repositories for disposal of both high-level radioactive waste and spent nuclear fuel. © 2012 Materials Research Society.
Abstract not provided.
Abstract not provided.
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Reliability Engineering and System Safety.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technologies (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level radioactive waste (HLW). The U.S. has, in accordance with the U.S. Nuclear Waste Policy Act (as amended), focused efforts for the past twentyplus years on disposing of UNF and HLW in a geologic repository at Yucca Mountain, Nevada. The recent decision by the U.S. DOE to no longer pursue the development of that repository has necessitated investigating alternative concepts for the disposal of UNF and HLW that exists today and that could be generated under future fuel cycles. The disposal of UNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made by in the U.S and other nations, but gaps in knowledge still exist. The U.S. national laboratories have participated in these programs and have conducted R&D related to these issues to a limited extent. However, a comprehensive R&D program investigating a variety of storage, geologic media, and disposal concepts has not been a part of the U.S. waste management program since the mid 1980s because of its focus on the Yucca Mountain site. Such a comprehensive R&D program is being developed and executed in the UFDC using a systematic approach to identify potential R&D opportunities. This paper describes the process used by the UFDC to identify and prioritize R&D opportunities. The U.S. DOE has cooperated and collaborated with other countries in many different "arenas" including the Nuclear Energy Agency (NEA) within the Organisation for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited the DOE through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. Recognizing that programs in other countries have made significant advances in understanding a wide range of geologic environments, the UFDC has developed a strategy for continued, and expanded, international collaboration. This paper also describes this strategy. Copyright © 2011 by ASME.
Abstract not provided.
Abstract not provided.
13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011
Published results of performance assessments for deep geologic disposal of high-level radioactive waste and spent nuclear fuel provide insight into those aspects of the waste form that are potentially important to the long-term performance of a repository system. Alternative waste forms, such as might result from new technologies for processing spent fuel and advances in nuclear reactor design, have the potential to affect the long-term performance of a geologic repository. This paper reviews relevant results of existing performance assessments for a range of disposal concepts and provides observations about how hypothetical modifications to waste characteristics (e.g., changes in radionuclide inventory, thermal loading, and durability of waste forms) might impact results of the performance assessment models. Disposal concepts considered include geologic repositories in both saturated and unsaturated environments. Specifically, we consider four recent performance assessments as representative of a range of disposal concepts. We examine the extent to which results of these performance assessments are affected by (i) thermal loading of the waste proposed for disposal; (ii) mechanical and chemical lifetime of the waste form; and (iii) radionuclide content of the waste. We find that peak subsurface temperature generally is a constraint that can be met through engineering solutions and that processing of wastes to reduce thermal power may enable more efficient use of repositories rather than improved repository performance. We observe that the rate of radionuclide release is often limited by geologic or chemical processes other than waste form degradation. Thus, the effects on repository performance of extending waste-form lifetime may be relatively small unless the waste form lifetime becomes sufficiently long relative to the period of repository performance. Finally, we find that changes to radionuclide content of waste (e.g., by separation or transmutation processes) do not in general correspond to proportional effects on repository performance. Rather, the effect of changes to radionuclide content depends on the relative mobility of various radionuclides through the repository system, and consequently on repository geology and geochemistry.
13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011
The safe management and disposition of used nuclear fuel and/or high level nuclear waste is a fundamental aspect of the nuclear fuel cycle. The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. However, a decision not to use the proposed Yucca Mountain Repository will result in longer interim storage at reactor sites than previously planned. In addition, alternatives to the once-through fuel cycle are being considered and a variety of options are being explored under the U.S. Department of Energy's Fuel Cycle Technologies Program. These two factors lead to the need to develop a credible strategy for managing radioactive wastes from any future nuclear fuel cycle in order to provide acceptable disposition pathways for all wastes regardless of transmutation system technology, fuel reprocessing scheme(s), and/or the selected fuel cycle. These disposition paths will involve both the storing of radioactive material for some period of time and the ultimate disposal of radioactive waste. To address the challenges associated with waste management, the DOE Office of Nuclear Energy established the Used Fuel Disposition Campaign in the summer of 2009. The mission of the Used Fuel Disposition Campaign is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The near-and long-term objectives of the Fuel Cycle Technologies Program and its ' Used Fuel Disposition Campaign are presented.
13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011
Waste heat generation, repository temperature, and waste radiotoxicity were evaluated using three idealized fuel cycle cases (Table I) in addition to reference UNF. Heat output was normalized to electrical energy produced, simplifying thermal analysis of alternative fuel cycles, especially if waste mass and volume can be accommodated using various container and engineered barrier system configurations. Using a reference repository thermal model, the peak near-field temperature for these cases is shown to be in the range 100 to 130°C, indicating that any of the cases considered can be thermally "fine tuned" (line loading density, decay storage) to limit temperatures as required. Whereas transmutation of TRUs has been proposed to limit repository temperatures after decay of short-lived fission products, the repository concept of operations (drift spacing, decay storage, waste packaging, active ventilation, etc.) can be readily adjusted to accomplish the same effect. The potential radiotoxicity from long-lived fission products, normalized to electricity produced, is effectively the same for all three fuel cycle cases. This is especially important for a repository in clay or shale, where LLFPs are the major contributors to projected dose. Thus, burning of TRUs (conversion to fission products) may decrease overall radiotoxicity, but without significantly changing the toxicity of fission products, or the projected dose for a clay/shale repository, if electrical energy is produced and taken into account (Figure 5). Separation of long-lived fission products, and direct transmutation, have limited applicability with attendant technical and economic challenges.11 Whatever approach is taken to manage long-lived fission products, it should consider the entire system including geologic disposal, and the impacts should be normalized to the benefits, i.e., to the useable energy produced.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010
The Department of Energy's 2008 Yucca Mountain Performance Assessment represents the culmination of more than two decades of analyses of post-closure repository performance in support of programmatic decision making for the proposed Yucca Mountain repository. The 2008 performance assessment summarizes the estimated long-term risks to the health and safety of the public resulting from disposal of spent nuclear fuel and high-level radioactive waste in the proposed Yucca Mountain repository. The standards at 10 CFR Part 63 request several numerical estimates quantifying performance of the repository over time. This paper summarizes the key quantitative results from the performance assessment and presents uncertainty and sensitivity analyses for these results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Risk, Hazards&Crisis in Public Policy
Published analyses of geologic repositories indicate potential for excellent long-term performance for a range of disposal concepts. Estimates of peak dose may be dominated by different radionuclides in different disposal concepts. Thermal loading issues can be addressed by design and operational choices. Impact of waste form lifetime on estimates of peak dose varies for different disposal concepts.
Abstract not provided.
Abstract not provided.
This paper provides a summary of observations drawn from twenty years of personal experience in working with regulatory criteria for the permanent disposal of radioactive waste for both the Waste Isolation Pilot Plant repository for transuranic defense waste and the proposed Yucca Mountain repository for spent nuclear fuel and high-level wastes. Rather than providing specific recommendations for regulatory criteria, my goal here is to provide a perspective on topics that are fundamental to how high-level radioactive waste disposal regulations have been implemented in the past. What are the main questions raised relevant to long-term disposal regulations? What has proven effective in the past? Where have regulatory requirements perhaps had unintended consequences? New regulations for radioactive waste disposal may prove necessary, but the drafting of these regulations may be premature until a broad range of policy issues are better addressed. In the interim, the perspective offered here may be helpful for framing policy discussions.
The presentation briefly addresses three topics. First, science has played an important role throughout the history of the WIPP project, beginning with site selection in the middle 1970s. Science was a key part of site characterization in the 1980s, providing basic information on geology, hydrology, geochemisty, and the mechanical behavior of the salt, among other topics. Science programs also made significant contributions to facility design, specifically in the area of shaft seal design and testing. By the middle 1990s, emphasis shifted from site characterization to regulatory evaluations, and the science program provided one of the essential bases for certification by the Environmental Protection Agency in 1998. Current science activities support ongoing disposal operations and regulatory recertification evaluations mandated by the EPA. Second, the EPA regulatory standards for long-term performance frame the scientific evaluations that provide the basis for certification. Unlike long-term dose standards applied to Yucca Mountain and proposed repositories in other nations, the WIPP regulations focused on cumulative releases during a fixed time interval of 10,000 years, and placed a high emphasis on the consequences of future inadvertent drilling intrusions into the repository. Close attention to the details of the regulatory requirements facilitated EPA's review of the DOE's 1996 Compliance Certification Application. Third, the scientific understanding developed for WIPP provided the basis for modeling studies that evaluated the long-term performance of the repository in the context of regulatory requirements. These performance assessment analyses formed a critical part of the demonstration that the site met the specific regulatory requirements as well as providing insight into the overall understanding of the long-term performance of the system. The presentation concludes with observations on the role of science in the process of developing a disposal system, including the importance of establishing the regulatory framework, building confidence in the long-term safety of the system, and the critical role of the regulator in decision making.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Despite decades of international consensus that deep geological disposal is the best option for permanent management of long-lived high-level radioactive wastes, no repositories for used nuclear fuel or high-level waste are in operation. Detailed long-term safety assessments have been completed worldwide for a wide range of repository designs and disposal concepts, however, and valuable insights from these assessments are available to inform future decisions about managing radioactive wastes. Qualitative comparisons among the existing safety assessments for disposal concepts in clay, granite, salt, and unsaturated volcanic tuff show how different geologic settings can be matched with appropriate engineered barrier systems to provide a high degree of confidence in the long-term safety of geologic disposal. Review of individual assessments provides insights regarding the release pathways and radionuclides that are most likely to contribute to estimated doses to humans in the far future for different disposal concepts, and can help focus research and development programs to improve management and disposal technologies. Lessons learned from existing safety assessments may be particularly relevant for informing decisions during the process of selecting potential repository sites.
Abstract not provided.
Abstract not provided.
Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scenario development has two primary purposes in the design and documentation of post-closure performance assessments in a regulatory setting. First, scenario development ensures a sufficiently comprehensive consideration of the possible future states of the system. Second, scenario development identifies the important scenarios that must be considered in quantitative analyses of the total system performance assessment (TSPA). Section 2.0 of this report describes the scenario development process. Steps in the process are described in Section 2.1, and terms introduced in this section are defined in Section 2.2. The electronic database used to document the process is described in Section 3, and Section 4 provides a summary of the current status of the YMP scenario development work. Section 5 contains acknowledgments, and Section 6 contains a list of the references cited.
Reliability Enginering and System Safety
The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.
Reliability Engineering and System Safety
Demonstrating compliance with the applicable regulations for the Waste Isolation Pilot Plant (WIPP) requires an assessment of the long-term performance of the disposal system. Scenario development is one starting point of this assessment, and generates inquiry about the present state and future evolution of the disposal system. Scenario development consists of four tasks: (1) identifying and classifying features, events and processes (FEPs), (2) screening FEPs according to well-defined criteria, (3) forming scenarios (combinations of FEPs) in the context of regulatory performance criteria and (4) specifying of scenarios for consequence analysis. The development and screening of a comprehensive FEP list provides assurance that the identification of significant processes and events is complete, that potential interactions between FEPs are not overlooked, and that responses to possible questions are available and well documented. Two basic scenarios have been identified for the WIPP: undisturbed performance (UP) and disturbed performance (DP). The UP scenario is used to evaluate compliance with the Environmental Protection Agency's (EPA's) Individual Dose (40 CFR Section 191-15) and Groundwater Protection (40 CFR Section 191-24) standards and accounts for all natural-, waste- and repository-induced FEPs that survive the screening process. The DP scenario is required for assessment calculations for the EPA's cumulative release standard (Containment Requirements, 40 CFR Section 191-13) and accounts for disruptive future human events, which have an uncertain probability of occurrence, in addition to the UP FEPs.
The US Department of Energy (DOE) is preparing to request the US Environmental Protection Agency to certify compliance with the radioactive waste disposal standards found in 40 CFR Part 191 for the Waste Isolation Pilot Plant (WIPP). The DOE will also need to demonstrate compliance with a number of other State and Federal standards and, in particular, the Land Disposal Restrictions of the Resource Conservation and Recovery Act (RCRA), 40 CFR Part 268. Demonstrating compliance with these regulations requires an assessment of the long-term performance of the WIPP disposal system. Re-evaluation and extension of past scenario development for the WIPP forms an integral part of the ongoing performance assessment (PA) process.
Scenario developments is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review, and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence is this aspect of the PA will be through the use of a systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.
The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.