Publications

Results 26–50 of 131

Search results

Jump to search filters

Effects of nitrogen on the interface density of states distribution in 4H-SiC metal oxide semiconductor field effect transistors: Super-hyperfine interactions and near interface silicon vacancy energy levels

Journal of Applied Physics

Anders, Mark A.; Lenahan, Patrick M.; Edwards, Arthur H.; Schultz, Peter A.; Van Ginhoven, Renee M.

The performance of silicon carbide (SiC)-based metal-oxide-semiconductor field-effect transistors (MOSFETs) is greatly enhanced by a post-oxidation anneal in NO. These anneals greatly improve effective channel mobilities and substantially decrease interface trap densities. In this work, we investigate the effect of NO anneals on the interface density of states through density functional theory (DFT) calculations and electrically detected magnetic resonance (EDMR) measurements. EDMR measurements on 4H-silicon carbide (4H-SiC) MOSFETs indicate that NO annealing substantially reduces the density of near interface SiC silicon vacancy centers: it results in a 30-fold reduction in the EDMR amplitude. The anneal also alters post-NO anneal resonance line shapes significantly. EDMR measurements exclusively sensitive to interface traps with near midgap energy levels have line shapes relatively unaffected by NO anneals, whereas the measurements sensitive to defects with energy levels more broadly distributed in the 4H-SiC bandgap are significantly altered by the anneals. Using DFT, we show that the observed change in EDMR linewidth and the correlation with energy levels can be explained by nitrogen atoms introduced by the NO annealing substituting into nearby carbon sites of silicon vacancy defects.

More Details

Modelling Charged Defects in Non-Cubic Semiconductors for Radiation Effects Studies in Next Generation Materials

Schultz, Peter A.

This final report summarizes the results of the Laboratory Directed Research and Devel- opment (LDRD) Project Number 212587 entitled "Modeling Charged Defects in Non-Cubic Semiconductors for Radiation Effects Studies in Next Generation Electronic Materials" . The goal of this project was to extend a predictive capability for modeling defect level energies using first principle density functional theory methods (e.g., for radiation effects assessments) to semiconductors with non-cubic crystal structures. Computational methods that proved accurate for predicting defect levels in standard cubic semiconductors, were found to have shortcomings when applied to the lowered symmetry structures prevalent in next generation electronic materials such as SiC, GaN, and Ga203, stemming from an error in the treatment of the electrostatic boundary conditions. I describe methods to generalized the local moment countercharge (LMCC) scheme to position a charge in bulk supercell calculations of charged defects, circumventing the problem of measuring a dipole in a periodically replicated bulk calculation.

More Details

The journey from forensic to predictive materials science using density functional theory

Modelling and Simulation in Materials Science and Engineering

Schultz, Peter A.

Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

More Details
Results 26–50 of 131
Results 26–50 of 131