Mapping of Radiation-Induced Resistance Changes and Multiple Conduction Channels in TaOx Memristors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
This document gives detailed test guidelines for single-event upset (SEU), single-event latchup (SEL), single-event burnout (SEB), and single-event gate rupture (SEGR) hardness assurance testing. It includes guidelines for both heavy-ion and proton environments. The guidelines are based on many years of testing at remote site facilities and our present understanding of the mechanisms for single-event effects. © 1963-2012 IEEE.
IEEE Transactions on Nuclear Science
This document describes the radiation environments, physical mechanisms, and test philosophies that underpin radiation hardness assurance test methodologies. The natural space radiation environment is presented, including the contributions of both trapped and transient particles. The effects of shielding on radiation environments are briefly discussed. Laboratory radiation sources used to simulate radiation environments are covered, including how to choose appropriate sources to mimic environments of interest. The fundamental interactions of radiation with materials via direct and indirect ionization are summarized. Some general test considerations are covered, followed by in-depth discussions of physical mechanisms and issues for total dose and single-event effects testing. The purpose of this document is to describe why the test protocols we use are constructed the way they are. In other words, to answer the question: 'Why do we test it that way?' © 1963-2012 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Techniques for removing the back substrate of SOI devices are described for both packaged devices and devices at the die level. The use of these techniques for microbeam, heavy-ion, and laser testing are illustrated. © 2012 IEEE.
Proceedings of the European Conference on Radiation and its Effects on Components and Systems, RADECS
The potential for using the degraded beam of high-energy proton radiation sources for proton hardness assurance testing for ICs that are sensitive to proton direct ionization effects are explored. SRAMs were irradiated using high energy proton radiation sources (∼67-70 MeV). The proton energy was degraded using plastic or Al degraders. Peaks in the SEU cross section due to direct ionization were observed. To best observe proton direct ionization effects, one needs to maximize the number of protons in the energy spectrum below the proton energy SEU threshold. SRIM simulations show that there is a tradeoff between increasing the fraction of protons in the energy spectrum with low energies by decreasing the peak energy and the reduction in the total number of protons as protons are stopped in the device as the proton energy is decreased. Two possible methods for increasing the number of low energy protons is to decrease the primary proton energy to reduce the amount of energy straggle and to place the degrader close to the DUT to minimize angular dispersion. These results suggest that high-energy proton radiation sources may be useful for identifying devices sensitive to proton direct ionization. © 2011 IEEE.
European Space Agency, [Special Publication] ESA SP
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science (Dec. 2011)
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
IEEE Transactions on Nuclear Science, Dec. 2011
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.