Publications

Results 101–150 of 189

Search results

Jump to search filters

Radar-Cross-Section Reduction of Wind Turbines (Part 1)

Mcdonald, Jacob J.; Brock, Billy C.; Allen, Steven E.; Clem, Paul; Paquette, Joshua A.; Patitz, Ward E.; Calkins, David; Loui, Hung

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

More Details

A Summary of the Theory and Design Team Efforts for the Sandia Metamaterials Science and Technology Grand Challenge LDRD

Basilio, Lorena I.; Brener, Igal; Burckel, David B.; Shaner, Eric A.; Wendt, Joel R.; Luk, Ting S.; Ellis, A.R.; Bender, Daniel A.; Clem, Paul; Rasberry, Roger D.; Langston, William L.; Ihlefeld, Jon F.; Dirk, Shawn M.; Warne, Larry K.; Peters, David; El-Kady, Ihab F.; Reinke, Charles M.; Loui, Hung; Williams, Jeffery T.; Sinclair, Michael B.; Mccormick, Frederick B.

Abstract not provided.

Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries

Advanced Materials

Ihlefeld, Jon F.; Clem, Paul; Doyle, B.L.; Kotula, Paul G.; Fenton, Kyle R.; Apblett, Christopher A.

By utilizing an equilibrium processing strategy that enables co-firing of oxides and base metals, a means to integrate the lithium-stable fast lithium-ion conductor lanthanum lithium tantalate directly with a thin copper foil current collector appropriate for a solid-state battery is presented. This resulting thin-film electrolyte possesses a room temperature lithium-ion conductivity of 1.5 × 10 -5 S cm -1, which has the potential to increase the power of a solid-state battery over current state of the art. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details

Polynorbornene as a low loss matrix material for IR metamaterial applications

Rasberry, Roger D.; Ginn, James C.; Hines, Paul H.; Arrington, Christian L.; Sinclair, Michael B.; Clem, Paul; Dirk, Shawn M.

Novel low loss photopatternable matrix materials for IR metamaterial applications were synthesized using the ring opening metathesis polymerization reaction (ROMP) of norbornene followed by a partial hydrogenation to remove most of the IR absorbing olefin groups which absorb in the 8-12 {micro}m range. Photopatterning was achieved via crosslinking of the remaining olefin groups with alpha, omega-dithiols via the thiol-ene coupling reaction. Since ROMP is a living polymerization the molecular weight of the polymer can be controlled simply by varying the ratio of catalyst to monomer. In order to determine the optimum photopattenable IR matrix material we varied the amount of olefin remaining after the partial hydrogenation. Hydrogenation was accomplished using tosyl hydrazide. The degree of hydrogenation can be controlled by altering the reaction time or reaction stoichiometry and the by-products can be easily removed during workup by precipitation into ethanol. Several polymers have been prepared using this reduction scheme including two polymers which had 54% and 68% olefin remaining. Free standing films (approx. 12 {micro}m) were prepared from the 68% olefin material using draw-down technique and subsequently irradiated with a UV lamp (365 nm) for thirty minutes to induce crosslinking via thiol-ene reaction. After crosslinking, the olefin IR-absorption band disappeared and the Tg of the matrix material increased; both desirable properties for IR metamaterial applications. The polymer system has inherent photopatternable behavior primarily because of solubility differences between the pre-polymer and cross-linked matrix. Photopatterned structures using the 54% as well as the 68% olefin material were easily obtained. The synthesis, processing, and IR absorption data and the ramifications to dielectric metamaterials will be discussed.

More Details

Structure-property relations in negative permittivity reststrahlen materials for IR metamaterial applications

Ihlefeld, Jon F.; Ginn, James C.; Rodriguez, Marko A.; Kotula, Paul G.; Clem, Paul; Sinclair, Michael B.

We will present a study of the structure-property relations in Reststrahlen materials that possess a band of negative permittivities in the infrared. It will be shown that sub-micron defects strongly affect the optical response, resulting in significantly diminished permittivities. This work has implications on the use of ionic materials in IR-metamaterials.

More Details

Crystal coherence length effects on the infrared optical response of MgO thin films

Ginn, James C.; Kotula, Paul G.; Rodriguez, Marko A.; Clem, Paul; Sinclair, Michael B.

The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

More Details

Towards printable open air microfluidics

Collord, Andrew D.; Branson, Eric D.; Cook, Adam; Clem, Paul; Apblett, Christopher A.

We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

More Details

Direct write of metals and functional materials for three-dimensional interconnects and antennas

5th IMAPS/ACerS International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies 2009, CICMT 2009

Clem, Paul; Carroll, James F.; Cook, Adam; Branson, Eric D.; Apblett, Christopher A.

Recent advances in nanoparticle inks have enabled inkjet printing of metal traces and interconnects with very low (100-200°C) process temperatures. This has enabled integration of printable electronics such as antennas and radio frequency identification (RFID) tags with polyimide, teflon, PCBs, and other low temperature substrates. We discuss here printing of nanoparticle inks for three dimensional interconnects, and the apparent mechanism of nanoparticle ink conductivity development at these low process temperatures.

More Details

Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling

Altman, Susan J.; Clem, Paul; Cook, Adam; Hart, William E.; Hibbs, Michael; Ho, Clifford K.; Jones, Howland D.T.; Sun, Amy C.; Webb, Stephen W.

Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

More Details

Intelligent front-end sample preparation tool using acoustic streaming

Vreeland, Erika; Smith, Gennifer; Edwards, Thayne L.; James, Conrad D.; Mcclain, Jaime; Murton, Jaclyn K.; Kotulski, Joseph D.; Clem, Paul

We have successfully developed a nucleic acid extraction system based on a microacoustic lysis array coupled to an integrated nucleic acid extraction system all on a single cartridge. The microacoustic lysing array is based on 36{sup o} Y cut lithium niobate, which couples bulk acoustic waves (BAW) into the microchannels. The microchannels were fabricated using Mylar laminates and fused silica to form acoustic-fluidic interface cartridges. The transducer array consists of four active elements directed for cell lysis and one optional BAW element for mixing on the cartridge. The lysis system was modeled using one dimensional (1D) transmission line and two dimensional (2D) FEM models. For input powers required to lyse cells, the flow rate dictated the temperature change across the lysing region. From the computational models, a flow rate of 10 {micro}L/min produced a temperature rise of 23.2 C and only 6.7 C when flowing at 60 {micro}L/min. The measured temperature changes were 5 C less than the model. The computational models also permitted optimization of the acoustic coupling to the microchannel region and revealed the potential impact of thermal effects if not controlled. Using E. coli, we achieved a lysing efficacy of 49.9 {+-} 29.92 % based on a cell viability assay with a 757.2 % increase in ATP release within 20 seconds of acoustic exposure. A bench-top lysing system required 15-20 minutes operating up to 58 Watts to achieve the same level of cell lysis. We demonstrate that active mixing on the cartridge was critical to maximize binding and release of nucleic acid to the magnetic beads. Using a sol-gel silica bead matrix filled microchannel the extraction efficacy was 40%. The cartridge based magnetic bead system had an extraction efficiency of 19.2%. For an electric field based method that used Nafion films, a nucleic acid extraction efficiency of 66.3 % was achieved at 6 volts DC. For the flow rates we tested (10-50 {micro}L/min), the nucleic acid extraction time was 5-10 minutes for a volume of 50 {micro}L. Moreover, a unique feature of this technology is the ability to replace the cartridges for subsequent nucleic acid extractions.

More Details

Fabrication of (Ba,Sr)TiO3 high-value integrated capacitors by chemical solution deposition

IEEE International Symposium on Applications of Ferroelectrics

Sigman, Jennifer; Clem, Paul; Brennecka, Geoff; Tuttle, Bruce

This report focuses on our recent advances in the fabrication and processing of barium strontium titanate (BST) thin films by chemical solution depositiion for next generation fuctional integrated capacitors. Projected trends for capacitors include increasing capacitance density, decreasing operating voltages, decreasing dielectric thickness and decreased process cost. Key to all these trends is the strong correlation of film phase evolution and resulting microstructure, it becomes possible to tailor the microstructure for specific applications. This interplay will be discussed in relation to the resulting temperature dependent dielectric response of the BST films.

More Details

Analysis of micromixers to reduce biofouling on reverse-osmosis membranes

Environmental Progress

Ho, Clifford K.; Altman, Susan J.; Jones, Howland D.T.; Khalsa, Siri S.; Clem, Paul

Features (micromixers) that promote chaotic mixing were fabricated on reverse-osmosis membrane surfaces and evaluated using computational models and laboratory experiments to determine their effectiveness in reducing biofouling. Computational fluid dynamics models of membrane feed channels were developed using different patterns of micromixers on the membrane surface. The shear-stress distribution along the membrane surface was simulated for steady flows along the different micromixer configurations. In addition, the hypothetical mass transfer of a tracer from the membrane surface was used as a metric to compare the amount of scouring and mixing in configurations with and without micromixers. Epoxy micromixers were printed directly onto membrane surfaces, and different patterns were evaluated experimentally. Fluorescence hyperspectral imaging results showed that regions of simulated high shear stress on the membrane corresponded to regions of lower bacterial growth in the experiments, while regions of simulated low shear stress corresponded to regions of higher bacterial growth. In addition, the presence of the micromixers appeared to reduce the overall biofouling concentration in one series of experiments, but the results were inconclusive in another series of experiments. These results indicate that while the enhancement of mixing and shear stress via micromixers may delay or mitigate the onset of localized membrane fouling from biofilms or other contaminants. the impact of micromixers on the overall performance of reverse-osmosis membranes needs further investigation. © 2008 American Institute of Chemical Engineers.

More Details

Advances in (Ba,Sr)TiO3 high value capacitors fabricated by chemical solution deposition

Clem, Paul; Brennecka, Geoff; Tuttle, Bruce

This report focuses on our recent advances in the fabrication and processing of barium strontium titanate (BST) thin films by chemical solution deposition for next generation functional integrated capacitors. Projected trends for capacitors include increasing capacitance density, decreasing operating voltages, decreasing dielectric thickness and decreased process cost. Key to all these trends is the strong correlation of film phase evolution and resulting microstructure, it becomes possible to tailor the microstructure for specific applications. This interplay will be discussed in relation to the resulting temperature dependent dielectric response of the BST films.

More Details
Results 101–150 of 189
Results 101–150 of 189