Publications

Results 51–75 of 350

Search results

Jump to search filters

Analysis of Conservation Voltage Reduction under Inverter-Based VAR-Support [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

Conservation voltage reduction (CVR) is a common technique used by utilities to strategically reduce demand during peak periods. As penetration levels of distributed generation (DG) continue to rise and advanced inverter capabilities become more common, it is unclear how the effectiveness of CVR will be impacted and how CVR interacts with advanced inverter functions. In this work, we investigated the mutual impacts of CVR and DG from photovoltaic (PV) systems (with and without autonomous Volt-VAR enabled). The analysis was conducted on an actual utility dataset, including a feeder model, measurement data from smart meters and intelligent reclosers, and metadata for more than 30 CVR events triggered by the utility over the year. The installed capacity of the modeled PV systems represented 66% of peak load, but reached instantaneous penetrations reached up to 2.5x the load consumption over the year. While the objectives of CVR and autonomous Volt-VAR are opposed to one another, this study found that their interactions were mostly inconsequential since the CVR events occurred when total PV output was low.

More Details

Analysis of Reactive Power Load Modeling Techniques for PV Impact Studies [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

The increasing availability of advanced metering infrastructure (AMI) data has led to significant improvements in load modeling accuracy. However, since many AMI devices were installed to facilitate billing practices, few utilities record or store reactive power demand measurements from their AMI. When reactive power measurements are unavailable, simplifying assumptions are often applied for load modeling purposes, such as applying constant power factors to the loads. The objective of this work is to quantify the impact that reactive power load modeling practices can have on distribution system analysis, with a particular focus on evaluating the behaviors of distributed photovoltaic (PV) systems with advanced inverter capabilities. Quasi-static time-series simulations were conducted after applying a variety of reactive power load modeling approaches, and the results were compared to a baseline scenario in which real and reactive power measurements were available at all customer locations on the circuit. Overall, it was observed that applying constant power factors to loads can lead to significant errors when evaluating customer voltage profiles, but that performing per-phase time-series reactive power allocation can be utilized to reduce these errors by about 6x, on average, resulting in more accurate evaluations of advanced inverter functions.

More Details

Evaluation of Adaptive Volt-VAR to Mitigate PV Impacts [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

Distributed generation (DG) sources like photovoltaic (PV) systems with advanced inverters are able to perform grid-support functions, like autonomous Volt-VAR that attempts to mitigate voltage issues by injecting or consuming reactive power. However, the Volt-VAR function operates with VAR priority, meaning real power may be curtailed to provide additional reactive power support. Since some locations on the grid may be more prone to higher voltages than others, PV systems installed at those locations may be forced to curtail more power, adversely impacting the value of that PV system. Adaptive Volt-VAR (AVV) could be implemented as an alternative, whereby the Volt-VAR reference voltage changes over time, but this functionality has not been well-explored in the literature. In this work, the potential benefits and grid impacts of AVV were investigated using yearlong quasi-static time-series (QSTS) simulations. After testing a variety of allowable AVV settings, we found that even with aggressive settings AVV resulted in <0.01% real power curtailment and significantly reduced the reactive power support required from the PV inverter compared to conventional Volt-VAR but did not provide much mitigation for extreme voltage conditions. The reactive power support provided by AVV was injected to oppose large deviations in voltage (in either direction), indicating that it could be useful for other applications like reducing voltage flicker or minimizing interactions with other voltage regulating devices.

More Details

AI-Based Protective Relays for Electric Grid Resiliency

Reno, Matthew J.; Blakely, Logan

The protection systems (circuit breakers, relays, reclosers, and fuses) of the electric grid are the primary component responding to resilience events, ranging from common storms to extreme events. The protective equipment must detect and operate very quickly, generally <0.25 seconds, to remove faults in the system before the system goes unstable or additional equipment is damaged. The burden on protection systems is increasing as the complexity of the grid increases; renewable energy resources, particularly inverter-based resources (IBR) and increasing electrification all contribute to a more complex grid landscape for protection devices. In addition, there are increasing threats from natural disasters, aging infrastructure, and manmade attacks that can cause faults and disturbances in the electric grid. The challenge for the application of AI into power system protection is that events are rare and unpredictable. In order to improve the resiliency of the electric grid, AI has to be able to learn from very little data. During an extreme disaster, it may not be important that the perfect, most optimal action is taken, but AI must be guaranteed to always respond by moving the grid toward a more stable state during unseen events.

More Details

DC microgrid fault detection using multiresolution analysis of traveling waves

International Journal of Electrical Power and Energy Systems

Montoya, Rudy; Poudel, Binod P.; Bidram, Ali; Reno, Matthew J.

Fast detection and isolation of faults in a DC microgrid is of particular importance. Fast tripping protection (i) increases the lifetime of power electronics (PE) switches by avoiding high fault current magnitudes and (ii) enhances the controllability of PE converters. This paper proposes a traveling wave (TW) based scheme for fast tripping protection of DC microgrids. The proposed scheme utilizes a discrete wavelet transform (DWT) to calculate the high-frequency components of DC fault currents. Multiresolution analysis (MRA) using DWT is utilized to detect TW components for different frequency ranges. The Parseval energy of the MRA coefficients are then calculated to demonstrate a quantitative relationship between the fault current signal energy and coefficients’ energy. The calculated Parseval energy values are used to train a Support Vector Machine classifier to identify the fault type and a Gaussian Process regression engine to estimate the fault location on the DC cables. The proposed approach is verified by simulating two microgrid test systems in PSCAD/EMTDC.

More Details

Low Voltage Network Protection Utility Workshop (Summary and Next Steps)

Cheng, Zheyuan; Udren, Eric A.; Holbach, Juergen; Hart, David; Reno, Matthew J.; Ropp, Michael E.

Increased penetration of Distributed Energy Resources and microgrids have fundamentally changed the operation al characteristics of Low Voltage (LV) network systems. Current LV network protection philosophy and practice are due for a significant re vamp to keep up with changing operating conditions. This workshop invites four of the major LV network users in the US to discuss the challenges they face today and the new technologies they have been experimenting with in light of this workshop discussion, use cases for further hardware-in-the-loop testing efforts are proposed to evaluate new LV network protection solutions.

More Details

Multiple Inverter Microgrid Experimental Fault Testing

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Flicker, Jack D.

For the resiliency of both small and large distribution systems, the concept of microgrids is arising. The ability for sections of the distribution system to be 'self-sufficient' and operate under their own energy generation is a desirable concept. This would allow for only small sections of the system to be without power after being affected by abnormal events such as a fault or a natural disaster, and allow for a greater number of consumers to go through their lives as normal. Research is needed to determine how different forms of generation will perform in a microgrid, as well as how to properly protect an islanded system. While synchronous generators are well understood and generally accepted amongst utility operators, inverter-based resources (IBRs) are less common. An IBR's fault characteristic varies between manufacturers and is heavily based on the internal control scheme. Additionally, with the internal protections of these devices to not damage the switching components, IBRs are usually limited to only 1.1-2.5p.u. of the rated current, depending on the technology. This results in traditional protection methods such as overcurrent devices being unable to 'trip' in a microgrid with high IBR penetration. Moreover, grid-following inverters (commonly used for photovoltaic systems) require a voltage source to synchronize with before operating. Also, these inverters do not provide any inertia to a system. On the other hand, grid-forming inverters can operate as a primary voltage source, and provide an 'emulated inertia' to the system. This study will look at a small islanded system with a grid-forming inverter, and a grid-following inverter subjected to a line-to-ground fault.

More Details

Improving Behind-the-Meter PV Impact Studies with Data-Driven Modeling and Analysis

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Talkington, Samuel; Reno, Matthew J.; Grijalva, Santiago; Blakely, Logan; Pinney, David; Mchann, Stanley

Frequent changes in penetration levels of distributed energy resources (DERs) and grid control objectives have caused the maintenance of accurate and reliable grid models for behind-the-meter (BTM) photovoltaic (PV) system impact studies to become an increasingly challenging task. At the same time, high adoption rates of advanced metering infrastructure (AMI) devices have improved load modeling techniques and have enabled the application of machine learning algorithms to a wide variety of model calibration tasks. Therefore, we propose that these algorithms can be applied to improve the quality of the input data and grid models used for PV impact studies. In this paper, these potential improvements were assessed for their ability to improve the accuracy of locational BTM PV hosting capacity analysis (HCA). Specifically, the voltage- and thermal-constrained hosting capacities of every customer location on a distribution feeder (1,379 in total) were calculated every 15 minutes for an entire year before and after each calibration algorithm or load modeling technique was applied. Overall, the HCA results were found to be highly sensitive to the various modeling deficiencies under investigation, illustrating the opportunity for more data-centric/model-free approaches to PV impact studies.

More Details

Grid-Forming and Grid-Following Inverter Comparison of Droop Response

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Du, Wei; Schneider, Kevin

With the increase in penetration of inverter-based resources (IBRs) in the electrical power system, the ability of these devices to provide grid support to the system has become a necessity. With standards previously developed for the interconnection requirements of grid-following inverters (GFLI) (most commonly photovoltaic inverters), it has been well documented how these inverters 'should' respond to changes in voltage and frequency. However, with other IBRs such as grid-forming inverters (GFMIs) (used for energy storage systems, standalone systems, and as uninterruptable power supplies) these requirements are either: not yet documented, or require a more in deep analysis. With the increased interest in microgrids, GFMIs that can be paralleled onto a distribution system have become desired. With the proper control schemes, a GFMI can help maintain grid stability through fast response compared to rotating machines. This paper will present an experimental comparison of commercially available GFMIand GFLI ' responses to voltage and frequency deviation, as well as the GFMIoperating as a standalone system and subjected to various changes in loads.

More Details

Impact of Modeling Assumptions on Traveling Wave Protective Relays in Hardware in the Loop

IEEE Power and Energy Society General Meeting

Hernandez-Alvidrez, Javier; Jimenez-Aparicio, Miguel; Reno, Matthew J.

As the legacy distance protection schemes are starting to transition from impedance-based to traveling wave (TW) time-based, it is important to perform diligent simulations prior to commissioning the TW relay. Since Control-Hardware-In-the-Loop (CHIL) simulations have recently become a common practice for power system research, this work aims to illustrate some limitations in the integration of commercially available TW relays in CHIL for transmission-level simulations. The interconnection of Frequency-Dependent (FD) with PI-modeled transmission lines, which is a common practice in CHIL, may lead to sharp reflections that ease the relaying task. However, modeling contiguous lines as FD, or the presence of certain shunt loads, may cover certain TW reflections. As a consequence, the fault location algorithm in the relay may lead to a wrong calculation. In this paper, a qualitative comparison of the performance of commercially available TW relay is carried out to show how the system modeling in CHIL may affect the fault location accuracy.

More Details

Sparse Time Series Sampling for Recovery of Behind-the-Meter Inverter Control Models

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Talkington, Samuel; Grijalva, Santiago; Reno, Matthew J.

Incorrect modeling of control characteristics for inverter-based resources (IBRs) can affect the accuracy of electric power system studies. In many distribution system contexts, the control settings for behind-the-meter (BTM) IBRs are unknown. This paper presents an efficient method for selecting a small number of time series samples from net load meter data that can be used for reconstructing or classifying the control settings of BTM IBRs. Sparse approximation techniques are used to select the time series samples that cause the inversion of a matrix of candidate responses to be as well-conditioned as possible. We verify these methods on 451 actual advanced metering infrastructure (AMI) datasets from loads with BTM IBRs. Selecting 60 15-minute granularity time series samples, we recover BTM control characteristics with a mean error less than 0.2 kVAR.

More Details

Data-Driven Detection of Phase Changes in Evolving Distribution Systems

2022 IEEE Texas Power and Energy Conference, TPEC 2022

Pena, Bethany D.; Blakely, Logan; Reno, Matthew J.

The installation of digital sensors, such as advanced meter infrastructure (AMI) meters, has provided the means to implement a wide variety of techniques to increase visibility into the distribution system, including the ability to calibrate the utility models using data-driven algorithms. One challenge in maintaining accurate and up-to-date distribution system models is identifying changes and event occurrences that happen during the year, such as customers who have changed phases due to maintenance or other events. This work proposes a method for the detection of phase change events that utilizes techniques from an existing phase identification algorithm. This work utilizes an ensemble step to obtain predicted phases for windows of data, therefore allowing the predicted phase of customers to be observed over time. The proposed algorithm was tested on four utility datasets as well as a synthetic dataset. The synthetic tests showed the algorithm was capable of accurately detecting true phase change events while limiting the number of false-positive events flagged. In addition, the algorithm was able to identify possible phase change events on two real datasets.

More Details

Prediction of Relay Settings in an Adaptive Protection System

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Summers, Adam; Patel, Trupal; Matthews, Ronald C.; Reno, Matthew J.

Communication-assisted adaptive protection can improve the speed and selectivity of the protection system. However, in the event, that communication is disrupted to the relays from the centralized adaptive protection system, predicting the local relay protection settings is a viable alternative. This work evaluates the potential for machine learning to overcome these challenges by using the Prophet algorithm programmed into each relay to individually predict the time-dial (TDS) and pickup current (IPICKUP) settings. A modified IEEE 123 feeder was used to generate the data needed to train and test the Prophet algorithm to individually predict the TDS and IPICKUP settings. The models were evaluated using the mean average percentage error (MAPE) and the root mean squared error (RMSE) as metrics. The results show that the algorithms could accurately predict IPICKUP setting with an average MAPE accuracy of 99.961%, and the TDS setting with a average MAPE accuracy of 94.32% which is sufficient for protection parameter prediction.

More Details

Substation-level Circuit Topology Estimation Using Machine Learning

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Garcia, Daniel R.; Poudel, Binod; Bidram, Ali; Reno, Matthew J.

Modern distribution systems can accommodate different topologies through controllable tie lines for increasing the reliability of the system. Estimating the prevailing circuit topology or configuration is of particular importance at the substation for different applications to properly operate and control the distribution system. One of the applications of circuit configuration estimation is adaptive protection. An adaptive protection system relies on the communication system infrastructure to identify the latest status of power. However, when the communication links to some of the equipment are outaged, the adaptive protection system may lose its awareness over the status of the system. Therefore, it is necessary to estimate the circuit status using the available healthy communicated data. This paper proposes the use of machine learning algorithms at the substation to estimate circuit configuration when the communication to the tie breakers is compromised. Doing so, the adaptive protection system can identify the correct protection settings corresponding to the estimated circuit topology. The effectiveness of the proposed approach is verified on IEEE 123 bus test system.

More Details

Testing Machine Learned Fault Detection and Classification on a DC Microgrid

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Ojetola, Samuel T.; Reno, Matthew J.; Flicker, Jack D.; Bauer, Daniel; Stoltzfuz, David

Interest in the application of DC Microgrids to distribution systems have been spurred by the continued rise of renewable energy resources and the dependence on DC loads. However, in comparison to AC systems, the lack of natural zero crossing in DC Microgrids makes the interruption of fault currents with fuses and circuit breakers more difficult. DC faults can cause severe damage to voltage-source converters within few milliseconds, hence, the need to quickly detect and isolate the fault. In this paper, the potential for five different Machine Learning (ML) classifiers to identify fault type and fault resistance in a DC Microgrid is explored. The ML algorithms are trained using simulated fault data recorded from a 750 VDC Microgrid modeled in PSCAD/EMTDC. The performance of the trained algorithms are tested using real fault data gathered from an operational DC Microgrid located on the Kirtland Air Force Base. Of the five ML algorithms, three could detect the fault and determine the fault type with at least 99% accuracy, and only one could estimate the fault resistance with at least 99% accuracy. By performing a self-learning monitoring and decision making analysis, protection relays equipped with ML algorithms can quickly detect and isolate faults to improve the protection operations on DC Microgrids.

More Details

Grid-Forming and Grid-Following Inverter Comparison of Droop Response

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Du, Wei; Schneider, Kevin

With the increase in penetration of inverter-based resources (IBRs) in the electrical power system, the ability of these devices to provide grid support to the system has become a necessity. With standards previously developed for the interconnection requirements of grid-following inverters (GFLI) (most commonly photovoltaic inverters), it has been well documented how these inverters 'should' respond to changes in voltage and frequency. However, with other IBRs such as grid-forming inverters (GFMIs) (used for energy storage systems, standalone systems, and as uninterruptable power supplies) these requirements are either: not yet documented, or require a more in deep analysis. With the increased interest in microgrids, GFMIs that can be paralleled onto a distribution system have become desired. With the proper control schemes, a GFMI can help maintain grid stability through fast response compared to rotating machines. This paper will present an experimental comparison of commercially available GFMIand GFLI ' responses to voltage and frequency deviation, as well as the GFMIoperating as a standalone system and subjected to various changes in loads.

More Details
Results 51–75 of 350
Results 51–75 of 350