Publications

Results 101–200 of 350

Search results

Jump to search filters

Estimation of PV Location based on Voltage Sensitivities in Distribution Systems with Discrete Voltage Regulation Equipment

2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings

Gomez-Peces, Cristian; Grijalva, Santiago; Reno, Matthew J.; Blakely, Logan

High penetration of solar photovoltaics can have a significant impact on the power flows and voltages in distribution systems. In order to support distribution grid planning, control and optimization, it is imperative for utilities to maintain an accurate database of the locations and sizes of PV systems. This paper extends previous work on methods to estimate the location of PV systems based on knowledge of the distribution network model and availability of voltage magnitude measurement streams. The proposed method leverages the expected impact of solar injection variations on the circuit voltage and takes into account the operation and impact of changes in voltage due to discrete voltage regulation equipment (VRE). The estimation model enables determining the most likely location of PV systems, as well as voltage regulator tap and switching capacitors state changes. The method has been tested for individual and multiple PV system, using the Chi-Square test as a metric to evaluate the goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus distribution feeders demonstrate the ability of the method to provide consistent estimations of PV locations as well as VRE actions.

More Details

Distribution System State Estimation Sensitivity to Errors in Phase Connections

Conference Record of the IEEE Photovoltaic Specialists Conference

Trevizan, Rodrigo D.; Reno, Matthew J.

High penetration of distributed energy resources presents challenges for monitoring and control of power distribution systems. Some of these problems might be solved through accurate monitoring of distribution systems, such as what can be achieved with distribution system state estimation (DSSE). With the recent large-scale deployment of advanced metering infrastructure associated with existing SCADA measurements, DSSE may become a reality in many utilities. In this paper, we present a sensitivity analysis of DSSE with respect to phase mislabeling of single-phase service transformers, another class of errors distribution system operators are faced with regularly. The results show DSSE is more robust to phase label errors than a power flow-based technique, which would allow distribution engineers to more accurately capture the impacts and benefits of distributed PV.

More Details

Modeling a Grid-Forming Inverter Dynamics under Ground Fault Scenarios Using Experimental Data from Commercially Available Equipment

Conference Record of the IEEE Photovoltaic Specialists Conference

Hernandez-Alvidrez, Javier; Gurule, Nicholas S.; Darbali-Zamora, Rachid; Reno, Matthew J.; Flicker, Jack D.

In order to address the recent inclement weather-related energy events, electricity production is experiencing an important transition from conventional fossil fuel based resources to the use of Distributed Energy Resources (DER), providing clean and renewable energy. These DERs make use of power electronic based devices that perform the energy conversion process required to interface with the utility grids. For the particular cases where DC/AC conversion is required, grid-forming inverters (GFMI) are gaining popularity over their grid-following (GFLI) counterpart. This is due to the fact that GFMI do not require a dedicated Phase Locked Loop (PLL) to synchronize with the grid. The absence of a PLL allows GFMI to operate in stand-alone (off-grid) mode when needed. Nowadays, inverter manufacturers are already offering several products with grid-forming capabilities. However, modeling the dynamics of commercially available GFMI under heavy loads or faults scenarios has become a critical task not only for stability studies, but also for coordination and protection schemes in power grids (or microgrids) that are experiencing a steady growth in their levels of DERs. Based upon experimental low-impedance fault results performed on a commercially available GFMI, this paper presents a modeling effort to replicate the dynamics of such inverters under these abnormal scenarios. The proposed modeling approach relies on modifying previously developed GFMI models, by adding the proper dynamics, to match the current and voltage transient behavior under low-impedance fault scenarios. For the first inverter tested, a modified CERTS GFMI model provides matching transient dynamics under faults scenarios with respect to the experimental results from the commercially available inverter.

More Details

Impact of Grid Support Functionality on PV Inverter Response to Faults

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Azzolini, Joseph A.; Darbali-Zamora, Rachid; Reno, Matthew J.

Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.

More Details

Impact of Grid Support Functionality on PV Inverter Response to Faults

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Azzolini, Joseph A.; Darbali-Zamora, Rachid; Reno, Matthew J.

Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.

More Details

Performance of a Grid-Forming Inverter under Balanced and Unbalanced Voltage Phase Angle Jump Conditions

Conference Record of the IEEE Photovoltaic Specialists Conference

Darbali-Zamora, Rachid; Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Gonzalez, Sigifredo; Reno, Matthew J.

Renewable energy has become a viable solution for reducing the harmful effects that fossil fuels have on our environment, prompting utilities to replace traditional synchronous generators (SG) with more inverter-based devices that can provide clean energy. One of the biggest challenges utilities are facing is that by replacing SG, there is a reduction in the systems' mechanical inertia, making them vulnerable to frequency instability. Grid-forming inverters (GFMI) have the ability to create and regulate their own voltage reference in a manner that helps stabilize system frequency. As an emerging technology, there is a need for understanding their dynamic behavior when subjected to abrupt changes. This paper evaluates the performance of a GFMI when subjected to voltage phase jump conditions. Experimental results are presented for the GFMI subjected to both balanced and unbalanced voltage phase jump events in both P/Q and V/f modes.

More Details

The Effects of Inverter Clipping and Curtailment-Inducing Grid Support Functions on PV Planning Decisions

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.

Recent trends in PV economics and advanced inverter functionalities have contributed to the rapid growth in PV adoption; PV modules have gotten much cheaper and advanced inverters can deliver a range of services in support of grid operations. However, these phenomena also provide conditions for PV curtailment, where high penetrations of distributed PV often necessitate the use of advanced inverter functions with VAR priority to address abnormal grid conditions like over- and under-voltages. This paper presents a detailed energy loss analysis, using a combination of open-source PV modeling tools and high-resolution time-series simulations, to place the magnitude of clipped and curtailed PV energy in context with other operational sources of PV energy loss. The simulations were conducted on a realistic distribution circuit, modified to include utility load data and 341 modeled PV systems at 25% of the customer locations. The results revealed that the magnitude of clipping losses often overshadows that of curtailment but, on average, both were among the lowest contributors to total annual PV energy loss. However, combined clipping and curtailment loss are likely to become more prevalent as recent trends continue.

More Details

Influence of Inverter-Based Resources on Microgrid Protection: Part 1: Microgrids in Radial Distribution Systems

IEEE Power and Energy Magazine

Reno, Matthew J.; Brahma, Sukumar; Bidram, Ali; Ropp, Michael E.

This article is the first in a two-part series on the influence of inverter-based resources (IBRs) s on microgrid protection. In part one, the focus is on microgrids deployed on radial circuits. This article discusses some of the challenges related to the protection of IBR-based microgrids and presents some ongoing research and solutions in the area. The different controls for IBRs are discussed to present how their short current signatures and dynamic response under faults impact microgrid protection. Recently, microgrids have gained much attention in the electric power industry due to their capability for improving power system reliability and resiliency, their impact on increasing the use of renewable resources, the reduced cost of distributed energy resource (DER) equipment, and the continuing evolution of applicable codes and standards.

More Details

Real-time Microgrid Test Bed for Protection and Resiliency Studies

2020 52nd North American Power Symposium, NAPS 2020

Patel, Trupal; Gadde, Phani; Brahma, Sukumar; Hernandez-Alvidrez, Javier; Reno, Matthew J.

The integration of renewable and distributed energy resources to the electric power system is expected to increase, particularly at the distribution level. As a consequence, the grid will become more modular consisting of many interconnected microgrids. These microgrids will likely evolve from existing distribution feeders and hence be unbalanced in nature. As the world moves towards cleaner and distributed generation, microgrids that are 100% inverter sourced will become more commonplace. To increase resiliency and reliability, these microgrids will need to operate in both grid-connected and islanded modes. Protection and control of these microgrids needs to be studied in real-time to test and validate possible solutions with hardware-in-the-loop (HIL) and real communication delays. This paper describes the creation of a real-time microgrid test bed based on the IEEE 13-bus distribution system using the RTDS platform. The inverter models with grid-forming and grid-following control schemes are discussed. Results highlighting stable operation, power sharing, and fault response are shown.

More Details

Circuit Topology Estimation in an Adaptive Protection System

2020 52nd North American Power Symposium, NAPS 2020

Poudel, Binod; Garcia, Daniel R.; Bidram, Ali; Reno, Matthew J.; Summers, Adam

The goal of this paper is to utilize machine learning (ML) techniques for estimating the distribution circuit topology in an adaptive protection system. In a reconfigurable distribution system with multiple tie lines, the adaptive protection system requires knowledge of the existing circuit topology to adapt the correct settings for the relay. Relays rely on the communication system to identify the latest status of remote breakers and tie lines. However, in the case of communication system failure, the performance of adaptive protection system can be significantly impacted. To tackle this challenge, the remote circuit breakers and tie lines' status are estimated locally at a relay to identify the circuit topology in a reconfigurable distribution system. This paper utilizes Support Vector Machine (SVM) to forecast the status of remote circuit breakers and identify the circuit topology. The effectiveness of proposed approach is verified on two sample test systems.

More Details

Leveraging Additional Sensors for Phase Identification in Systems with Voltage Regulators

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Blakely, Logan; Reno, Matthew J.; Jones, Christian B.; Furlani Bastos, Alvaro; Nordy, David

The use of grid-edge sensing in distribution model calibration is a significant aid in reducing the time and cost associated with finding and correcting errors in the models. This work proposes a novel method for the phase identification task employing correlation coefficients on residential advanced metering infrastructure (AMI) combined with additional sensors on the medium-voltage distribution system to enable utilities to effectively calibrate the phase classification in distribution system models algorithmically. The proposed method was tested on a real utility feeder of ∼800 customers that includes 15-min voltage measurements on each phase from IntelliRupters® and 15-min AMI voltage measurements from all customers. The proposed method is compared with a standard phase identification method using voltage correlations with the substation and shows significantly improved results. The final phase predictions were verified to be correct in the field by the utility company.

More Details

Identification and Correction of Errors in Pairing AMI Meters and Transformers

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Blakely, Logan; Reno, Matthew J.

Distribution system model accuracy is increasingly important and using advanced metering infrastructure (AMI) data to algorithmically identify and correct errors can dramatically reduce the time required to correct errors in the models. This work proposes a data-driven, physics-based approach for grouping residential meters downstream of the same service transformer. The proposed method involves a two-stage approach that first uses correlation coefficient analysis to identify transformers with errors in their customer grouping then applies a second stage, using a linear regression formulation, to correct the errors. This method achieved >99% accuracy in transformer groupings, demonstrated using EPRI's Ckt 5 model containing 1379 customers and 591 transformers.

More Details

Topology Identification of Power Distribution Systems Using Time Series of Voltage Measurements

2021 IEEE Power and Energy Conference at Illinois, PECI 2021

Francis, Cody; Trevizan, Rodrigo D.; Reno, Matthew J.; Rao, Vittal

Topology identification in transmission systems has historically been accomplished using SCADA measurements. In distribution systems, however, SCADA measurements are insufficient to determine system topology. An accurate system topology is essential for distribution system monitoring and operation. Recently there has been a proliferation of Advanced Metering Infrastructure (AMI) by the electrical utilities, which improved the visibility into distribution systems. These measurements offer a unique capability for Distribution System Topology Identification (DSTI). A novel approach to DSTI is presented in this paper which utilizes the voltage magnitudes collected by distribution grid sensors to facilitate identification of the topology of the distribution network in real-time using Linear Discriminant Analysis (LDA) and Regularized Diagonal Quadratic Discriminant Analysis (RDQDA). The results show that this method can leverage noisy voltage magnitude readings from load buses to accurately identify distribution system reconfiguration between radial topologies during operation under changing loads.

More Details

Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV

Broderick, Robert J.; Reno, Matthew J.; Lave, Matt; Azzolini, Joseph A.; Blakely, Logan; Galtieri, Jason; Mather, Barry; Weekley, Andrew; Hunsberger, Randolph; Chamana, Manohar; Li, Qinmiao; Zhang, Wenqi; Latif, Aadil; Zhu, Xiangqi; Grijalva, Santiago; Zhang, Xiaochen; Deboever, Jeremiah; Qureshi, Muhammad U.; Therrien, Francis; Lacroix, Jean-Sebastien; Li, Feng; Belletete, Marc; Hebert, Guillaume; Montenegro, Davis; Dugan, Roger

The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modeling and impact analysis. Unlike conventional scenario-based studies, quasi-static time-series (QSTS) simulations can realistically model time-dependent voltage controllers and the diversity of potential impacts that can occur at different times of year. However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1-second resolution is often required, which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled. This computational burden is a clear limitation to the adoption of QSTS simulations in interconnection studies and for determining optimal control solutions for utility operations. The solutions we developed include accurate and computationally efficient QSTS methods that could be implemented in existing open-source and commercial software used by utilities and the development of methods to create high-resolution proxy data sets. This project demonstrated multiple pathways for speeding up the QSTS computation using new and innovative methods for advanced time-series analysis, faster power flow solvers, parallel processing of power flow solutions and circuit reduction. The target performance level for this project was achieved with year-long high-resolution time series solutions run in less than 5 minutes within an acceptable error.

More Details

Distribution Load Modeling - Survey of the Industry State, Current Practices and Future Needs

2021 North American Power Symposium, NAPS 2021

Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rylander, Matthew; Reno, Matthew J.

This paper discusses the findings from an EPRI industry survey mapping the state, current practices, and future needs of distribution load modeling in the U.S. and internationally. The paper provides a benchmark for distribution utilities and a view of the current industry state and future needs for researchers and other readers. The survey found the parameters and measurements available and utilized for load modeling to vary widely between the utilities and data types. Loads were found to be largely modeled based on different load allocation methods. While distribution planning was found to focus on assessing peak load conditions, some utilities evaluate other time instances and/or explore time-series assessments. Simple grid edge and voltage sensitivity models were found common. The identified future needs include access for additional data, as well as methods to process and utilize the increasing data, handle masked load, and perform time-series load modeling.

More Details

Fast fault location method for a distribution system with high penetration of PV

Proceedings of the Annual Hawaii International Conference on System Sciences

Aparicio, Miguel J.; Grijalva, Santiago; Reno, Matthew J.

Distribution systems with high levels of solar PV may experience notable changes due to external conditions, such as temperature or solar irradiation. Fault detection methods must be developed in order to support these changes of conditions. This paper develops a method for fast detection, location, and classification of faults in a system with a high level of solar PV. The method uses the Continuous Wavelet Transform (CWT) technique to detect the traveling waves produced by fault events. The CWT coefficients of the current waveform at the traveling wave arrival time provide a fingerprint that is characteristic of each fault type and location. Two Convolutional Neural Networks are trained to classify any new fault event. The method relays of several protection devices and doesn't require communication between them. The results show that for multiple fault scenarios and solar PV conditions, high accuracy for both location and type classification can be obtained.

More Details

Recovering Power Factor Control Settings of Solar PV Inverters from Net Load Data

2021 North American Power Symposium, NAPS 2021

Talkington, Samuel; Grijalva, Santiago; Reno, Matthew J.; Azzolini, Joseph A.

Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.

More Details

A Numerical Method for Fault Location in DC Systems Using Traveling Waves

2021 North American Power Symposium, NAPS 2021

Paruthiyil, Sajay K.; Montoya, Rudy; Bidram, Ali; Reno, Matthew J.

Due to the existence of DC-DC converters, fast-tripping fault location in DC power systems is of particular importance to ensure the reliable operation of DC systems. Traveling wave (TW) protection is one of the promising approaches to accommodate fast detection and location of faults in DC systems. This paper proposes a numerical approach for a DC system fault location using the concept of TWs. The proposed approach is based on multiresolution analysis to calculate the TW signal's wavelet coefficients for different frequency ranges, and then, the Parseval theorem is used to calculate the energy of wavelet coefficients. A curve-fitting approach is used to find the best curve that fits the Parseval energy as a function of fault location for a set of curve-fitting datapoints. The identified Parseval energy curves are then utilized to estimate the fault location when a new fault is applied on a DC cable. A DC test system simulated in PSCAD/EMTDC is used to verify the performance of the proposed fault location algorithm.

More Details

Maximum Power Point Tracking and Voltage Control in a Solar-PV based DC Microgrid Using Simulink

2021 North American Power Symposium, NAPS 2021

Miyagishima, Frank; Augustine, Sijo; Lavrova, Olga; Nademi, Hamed; Ranade, Satish; Reno, Matthew J.

This paper discusses a solar photovoltaic (PV) DC microgrid system consisting of a PV array, a battery, DC-DC converters, and a load, where all these elements are simulated in MATLAB/Simulink environment. The design and testing entail the functions of a boost converter and a bidirectional converter and how they work together to maintain stable control of the DC bus voltage and its energy management. Furthermore, the boost converter operates under Maximum Power Point Tracking (MPPT) settings to maximize the power that the PV array can output. The control algorithm can successfully maintain the output power of the PV array at its maximum point and can respond well to changes in input irradiance. This is shown in detail in the results section.

More Details

Impact of Load Allocation and High Penetration PV Modeling on QSTS-Based Curtailment Studies

IEEE Power and Energy Society General Meeting

Azzolini, Joseph A.; Reno, Matthew J.

The rising penetration levels of photovoltaic (PV) systems within distribution networks has driven considerable interest in the implementation of advanced inverter functions, like autonomous Volt- Var, to provide grid support in response to adverse conditions. Quasi-static time-series (QSTS) analyses are increasingly being utilized to evaluate advanced inverter functions on their potential benefits to the grid and to quantify the magnitude of PV power curtailment they may induce. However, these analyses require additional modeling efforts to appropriately capture the time-varying behavior of circuit elements like loads and PV systems. The contribution of this paper is to study QSTS-based curtailment evaluations with different load allocation and PV modeling practices under a variety of assumptions and data limitations. A total of 24 combinations of PV and load modeling scenarios were tested on a realistic test circuit with 1,379 loads and 701 PV systems. The results revealed that the average annual curtailment varied from the baseline value of 0.47% by an absolute difference of +0.55% to -0.43 % based on the modeling scenario.

More Details

A Dynamic Mode Decomposition Scheme to Analyze Power Quality Events

IEEE Access

Wilches-Bernal, Felipe; Reno, Matthew J.; Hernandez-Alvidrez, Javier

This paper presents a new method for detecting power quality disturbances, such as faults. The method is based on the dynamic mode decomposition (DMD)-a data-driven method to estimate linear dynamics whose eigenvalues and eigenvectors approximate those of the Koopman operator. The proposed method uses the real part of the main eigenvalue estimated by the DMD as the key indicator that a power quality event has occurred. The paper shows how the proposed method can be used to detect events using current and voltage signals to distinguish different faults. Because the proposed method is window-based, the effect that the window size has on the performance of the approach is analyzed. In addition, a study on the effect that noise has on the proposed approach is presented.

More Details

A Survey of Traveling Wave Protection Schemes in Electric Power Systems

IEEE Access

Wilches-Bernal, Felipe; Bidram, Ali; Reno, Matthew J.; Hernandez-Alvidrez, Javier; Barba, Pedro; Reimer, Benjamin; Carr, Christopher C.; Lavrova, Olga

As a result of the increase in penetration of inverter-based generation such as wind and solar, the dynamics of the grid are being modified. These modifications may threaten the stability of the power system since the dynamics of these devices are completely different from those of rotating generators. Protection schemes need to evolve with the changes in the grid to successfully deliver their objectives of maintaining safe and reliable grid operations. This paper explores the theory of traveling waves and how they can be used to enable fast protection mechanisms. It surveys a list of signal processing methods to extract information on power system signals following a disturbance. The paper also presents a literature review of traveling wave-based protection methods at the transmission and distribution levels of the grid and for AC and DC configurations. The paper then discusses simulations tools to help design and implement protection schemes. A discussion of the anticipated evolution of protection mechanisms with the challenges facing the grid is also presented.

More Details

Evaluating distributed PV curtailment using quasi-static time-series simulations

IEEE Open Access Journal of Power and Energy

Azzolini, Joseph A.; Reno, Matthew J.; Gurule, Nicholas S.; Horowitz, Kelsey A.W.

By strategically curtailing active power and providing reactive power support, photovoltaic (PV) systems with advanced inverters can mitigate voltage and thermal violations in distribution networks. Quasi-static time-series (QSTS) simulations are increasingly being utilized to study the implementation of these inverter functions as alternatives to traditional circuit upgrades. However, QSTS analyses can yield significantly different results based on the availability and resolution of input data and other modeling considerations. In this paper, we quantified the uncertainty of QSTS-based curtailment evaluations for two different grid-support functions (autonomous Volt-Var and centralized PV curtailment for preventing reverse power conditions) through extensive sensitivity analyses and hardware testing. We found that Volt-Var curtailment evaluations were most sensitive to poor inverter convergence (-56.4%), PV time-series data (-18.4% to +16.5%), QSTS resolution (-15.7%), and inverter modeling uncertainty (+14.7%), while the centralized control case was most sensitive to load modeling (-26.5% to +21.4%) and PV time-series data (-6.0% to +12.4%). These findings provide valuable insights for improving the reliability and accuracy of QSTS analyses for evaluating curtailment and other PV impact studies.

More Details

Cybersecurity of Networked Microgrids: Challenges Potential Solutions and Future Directions

Hossain-McKenzie, Shamina S.; Reno, Matthew J.; Bent, Russell; Chavez, Adrian R.

Networked microgrids are clusters of geographically-close, islanded microgrids that can function as a single, aggregate island. This flexibility enables customer-level resilience and reliability improvements during extreme event outages and also reduces utility costs during normal grid operations. To achieve this cohesive operation, microgrid controllers and external connections (including advanced communication protocols, protocol translators, and/or internet connection) are needed. However, these advancements also increase the vulnerability landscape of networked microgrids, and significant consequences could arise during networked operation, increasing cascading impact. To address these issues, this report seeks to understand the unique components, functions, and communications within networked microgrids and what cybersecurity solutions can be implemented and what solutions need to be developed. A literature review of microgrid cybersecurity research is provided and a gap analysis of what is additionally needed for securing networked microgrids is performed. Relevant cyber hygiene and best practices to implement are provided, as well as ideas on how cybersecurity can be integrated into networked microgrid design. Lastly, future directions of networked microgrid cybersecurity R&D are provided to inform next steps.

More Details

Secondary Networks and Protection: Implications for DER and Microgrid Interconnection

Ropp, Michael E.; Reno, Matthew J.; Bower, Ward; Reilly, James; Venkata, S.S.

Secondary networks are used to supply power to loads that require very high reliability and are in use around the world, particularly in dense urban downtown areas. The protection of secondary network systems poses unique challenges. The addition of distributed energy resources (DERs) to secondary networks can compound these challenges, and deployment of microgrids on secondary networks will create a new set of challenges and opportunities. This report discusses secondary networks and their protection, the challenges associated with interconnecting DERs to a secondary network, issues expected to be associated with creating microgrids on secondary networks, standards that deal with these challenges and issues, and suggestions for research and development foci that would yield new means for addressing these challenges.

More Details

Experimental Evaluation of Grid-Forming Inverters under Unbalanced and Fault Conditions

IECON Proceedings (Industrial Electronics Conference)

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Darbali-Zamora, Rachid; Reno, Matthew J.; Flicker, Jack D.

With inverter-based distributed energy resources (DERs) becoming more prevalent in grid-connected or islanded distribution feeders, a better understanding of the performance of these devices is needed. Increasing the amount of inverter-based generation, and therefore reducing conventional generation, i.e. rotating machines and synchronous generators, decreases generation sources with well-known characteristic responses for unbalanced and transient fault conditions. This paper experimentally tests the performance of commercial grid-forming inverters under fault and unbalanced conditions and provides a comparison between grid-forming inverters and their grid-following counterparts.

More Details

Volt-var curve reactive power control requirements and risks for feeders with distributed roof-top photovoltaic systems

Energies

Jones, Christian B.; Lave, Matt; Reno, Matthew J.; Darbali-Zamora, Rachid; Summers, Adam; Hossain-McKenzie, Shamina S.

The benefits and risks associated with Volt-Var Curve (VVC) control for management of voltages in electric feeders with distributed, roof-top photovoltaic (PV) can be defined using a stochastic hosting capacity analysis methodology. Although past work showed that a PV inverter's reactive power can improve grid voltages for large PV installations, this study adds to the past research by evaluating the control method's impact (both good and bad) when deployed throughout the feeder within small, distributed PV systems. The stochastic hosting capacity simulation effort iterated through hundreds of load and PV generation scenarios and various control types. The simulations also tested the impact of VVCs with tampered settings to understand the potential risks associated with a cyber-attack on all of the PV inverters scattered throughout a feeder. The simulation effort found that the VVC can have an insignificant role in managing the voltage when deployed in distributed roof-top PV inverters. This type of integration strategy will result in little to no harm when subjected to a successful cyber-attack that alters the VVC settings.

More Details

Identifying errors in service transformer connections

IEEE Power and Energy Society General Meeting

Blakely, Logan; Reno, Matthew J.

Distribution system models play a critical role in the modern grid, driving distributed energy resource integration through hosting capacity analysis and providing insight into critical areas of interest such as grid resilience and stability. Thus, the ability to validate and improve existing distribution system models is also critical. This work presents a method for identifying service transformers which contain errors in specifying the customers connected to the low-voltage side of that transformer. Pairwise correlation coefficients of the smart meter voltage time series are used to detect when a customer is not in the transformer grouping that is specified in the model. The proposed method is demonstrated both on synthetic data as well as a real utility feeder, and it successfully identifies errors in the transformer labeling in both datasets.

More Details

Evaluation of curtailment associated with PV system design considerations

IEEE Power and Energy Society General Meeting

Azzolini, Joseph A.; Reno, Matthew J.; Horowitz, Kelsey A.W.

Distributed photovoltaic (PV) systems equipped with advanced inverters can control real and reactive power output based on grid and atmospheric conditions. The Volt-Var control method allows inverters to regulate local grid voltages by producing or consuming reactive power. Based on their power ratings, the inverters may need to curtail real power to meet the reactive power requirements, which decreases their total energy production. To evaluate the expected curtailment associated with Volt-Var control, yearlong quasi-static time-series (QSTS) simulations were conducted on a realistic distribution feeder under a variety of PV system design considerations. Overall, this paper found that the amount of curtailed energy is low (< 0.55%) compared to the total PV energy production in a year but is affected by several PV system design considerations.

More Details

Phase identification using co-association matrix ensemble clustering

IET Smart Grid

Blakely, Logan; Reno, Matthew J.

Calibrating distribution system models to aid in the accuracy of simulations such as hosting capacity analysis is increasingly important in the pursuit of the goal of integrating more distributed energy resources. The recent availability of smart meter data is enabling the use of machine learning tools to automatically achieve model calibration tasks. This research focuses on applying machine learning to the phase identification task, using a co-association matrix-based, ensemble spectral clustering approach. The proposed method leverages voltage time series from smart meters and does not require existing or accurate phase labels. This work demonstrates the success of the proposed method on both synthetic and real data, surpassing the accuracy of other phase identification research.

More Details

Adaptive Protection Scheme for a Real-World Microgrid with 100% Inverter-Based Resources

2020 IEEE Kansas Power and Energy Conference, KPEC 2020

Patel, Trupal; Brahma, Sukumar; Hernandez-Alvidrez, Javier; Reno, Matthew J.

As more renewable generation connects to distribution systems, it is imminent that existing distribution feeders will be converted to microgrids-systems that offer resilience by providing the flexibility of supporting the grid in normal operation and operating as self-sustained islands when the grid is disconnected. However, inverter control and feeder protection will need to be tuned to the operating modes of the microgrid. This paper offers an insight into the issues involved by taking a case study of a real-world feeder located in the southwestern US that was converted to a microgrid with three solar PV units connecting to the feeder. Different inverter control configurations and adaptive protection using different settings for different operating conditions are proposed for safe operation of this microgrid. The solution also helps to create a framework for protection and coordination of other similar microgrids.

More Details

Method to Interface Grid-Forming Inverters into Power Hardware in the Loop Setups

Conference Record of the IEEE Photovoltaic Specialists Conference

Hernandez-Alvidrez, Javier; Gurule, Nicholas S.; Reno, Matthew J.; Flicker, Jack D.; Summers, Adam; Ellis, Abraham

During the last decade, utility companies around the world have experienced a significant increase in the occurrences of either planned or unplanned blackouts, and microgrids have emerged as a viable solution to improve grid resiliency and robustness. Recently, power converters with grid-forming capabilities have attracted interest from researchers and utilities as keystone devices enabling modern microgrid architectures. Therefore, proper and thorough testing of Grid-Forming Inverters (GFMIs) is crucial to understand their dynamics and limitations before they are deployed. The use of closed-loop real-time Power Hardware-in-the-Loop (PHIL) simulations will facilitate the testing of GFMIs using a digital twin of the power system under various contingency scenarios within a controlled environment. So far, lower to medium scale commercially available GFMIs are difficult to interface into PHIL simulations because of their lack of a synchronization mechanism that allows a smooth and stable interconnection with a voltage source such as a power amplifier. Under this scenario, the use of the well-known Ideal Transformer Method to create a PHIL setup can lead to catastrophic damages of the GFMI. This paper addresses a simple but novel method to interface commercially available GFMIs into a PHIL testbed. Experimental results showed that the proposed method is stable and accurate under standalone operation with abrupt (step) load-changing dynamics, followed by the corresponding steady state behavior. Such results were validated against the dynamics of the GFMI connected to a linear load bank.

More Details

Method to Interface Grid-Forming Inverters into Power Hardware in the Loop Setups

Conference Record of the IEEE Photovoltaic Specialists Conference

Hernandez-Alvidrez, Javier; Gurule, Nicholas S.; Reno, Matthew J.; Flicker, Jack D.; Summers, Adam; Ellis, Abraham

During the last decade, utility companies around the world have experienced a significant increase in the occurrences of either planned or unplanned blackouts, and microgrids have emerged as a viable solution to improve grid resiliency and robustness. Recently, power converters with grid-forming capabilities have attracted interest from researchers and utilities as keystone devices enabling modern microgrid architectures. Therefore, proper and thorough testing of Grid-Forming Inverters (GFMIs) is crucial to understand their dynamics and limitations before they are deployed. The use of closed-loop real-time Power Hardware-in-the-Loop (PHIL) simulations will facilitate the testing of GFMIs using a digital twin of the power system under various contingency scenarios within a controlled environment. So far, lower to medium scale commercially available GFMIs are difficult to interface into PHIL simulations because of their lack of a synchronization mechanism that allows a smooth and stable interconnection with a voltage source such as a power amplifier. Under this scenario, the use of the well-known Ideal Transformer Method to create a PHIL setup can lead to catastrophic damages of the GFMI. This paper addresses a simple but novel method to interface commercially available GFMIs into a PHIL testbed. Experimental results showed that the proposed method is stable and accurate under standalone operation with abrupt (step) load-changing dynamics, followed by the corresponding steady state behavior. Such results were validated against the dynamics of the GFMI connected to a linear load bank.

More Details

Fault Current Control and Protection in a Standalone DC Microgrid Using Adaptive Droop and Current Derivative

IEEE Journal of Emerging and Selected Topics in Power Electronics

Augustine, Sijo; Reno, Matthew J.; Brahma, Sukumar M.; Lavrova, Olga

This report presents a novel fault detection, characterization, and fault current control algorithm for a standalone solar-photovoltaic (PV) based dc microgrids. The protection scheme is based on the current derivative algorithm. The overcurrent and current directional/differential comparison based protection schemes are incorporated for the dc microgrid fault characterization. For a low impedance fault, the fault current is controlled based on the current/voltage thresholds and current direction. Generally, the droop method is used to control the power-sharing between the converters by controlling the reference voltage. In this article, an adaptive droop scheme is also proposed to control the fault current by calculating a virtual resistance R droop , and to control the converter output reference voltage. For a high impedance fault, differential comparison method is used to characterize the fault. These algorithms effectively control the converter pulsewidth and reduce the flow of source current from a particular converter, which helps to increase the fault clearing time. Additionally, a trip signal is sent to the corresponding dc circuit breaker (DCCB), to isolate the faulted converter, feeder or a dc bus. The dc microgrid protection design procedure is detailed, and the performance of the proposed method is verified by simulation analysis.

More Details

A blockchain-based mechanism for secure data exchange in smart grid protection systems

2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020

Sikeridis, Dimitrios; Bidram, Ali; Devetsikiotis, Michael; Reno, Matthew J.

Distribution and transmission protection systems are considered vital parts of modern smart grid ecosystems due to their ability to isolate faulted segments and preserve the operation of critical loads. Current protection schemes increasingly utilize cognitive methods to proactively modify their actions according to extreme power system changes. However, the effectiveness and robustness of these information-driven solutions rely entirely on the integrity, authenticity, and confidentiality of the data and control signals exchanged on the underlying relay communication networks. In this paper, we outline a scalable adaptive protection platform for distribution systems, and introduce a novel blockchain-based distributed network architecture to enhance data exchange security among the smart grid protection relays. The proposed mechanism utilizes a tiered blockchain architecture to counter the current technology limitations providing low latency with better scalability. The decentralized nature removes singular points of failure or contamination, enabling direct secure communication between smart grid relays. We also present a security analysis that demonstrates how the proposed framework prohibits any alterations on the blockchain ledger providing integrity and authenticity of the exchanged data (e.g., realtime measurements/relay settings). Finally, the performance of the proposed approach is evaluated through simulation on a blockchain benchmarking framework with the results demonstrating a promising solution for secure smart grid protection system communication.

More Details

Improved load modelling for emerging distribution system assessments

CIRED - Open Access Proceedings Journal

Siratarnsophon, Piyapath; Hernandez, Miguel; Peppanen, Jouni; Deboever, Jeremiah; Rylander, Matthew; Reno, Matthew J.

Distribution system modelling and analysis with growing penetration of distributed energy resources (DERs) requires more detailed and accurate distribution load modelling. Smart meters, DER monitors, and other distribution system sensors provide a new level of visibility to distribution system loads and DERs. However, there is a limited understanding of how to efficiently leverage the new information in distribution system load modelling. This study presents the assessment of 11 methods to leverage the emerging information for improved distribution system active and reactive power load modelling. The accuracy of these load modelling methods is assessed both at the primary and the secondary distribution levels by analysing over 2.7 billion data points of results of feeder node voltages and element phase currents obtained by performing annual quasi-static time series simulations on EPRI's Ckt5 feeder model.

More Details

A graph theory method for identification of a minimum breakpoint set for directional relay coordination

Electronics (Switzerland)

Matthews, Ronald C.; Reno, Matthew J.; Summers, Adam

The energy grid becomes more complex with increasing penetration of renewable resources, distributed energy storage, distributed generators, and more diverse loads such as electric vehicle charging stations. The presence of distributed energy resources (DERs) requires directional protection due to the added potential for energy to flow in both directions down the line. Additionally, contingency requirements for critical loads within a microgrid may result in looped or meshed systems. Computation speeds of iterative methods required to coordinate loops are improved by starting with a minimum breakpoint set (MBPS) of relays. A breakpoint set (BPS) is a set of breakers such that, when opened, breaks all loops in a mesh grid creating a radial system. A MBPS is a BPS that consists of the minimum possible number of relays required to accomplish this goal. In this paper, a method is proposed in which a minimum spanning tree is computed to indirectly break all loops in the system, and a set difference is used to identify the MBPS. The proposed method is found to minimize the cardinality of the BPS to achieve a MBPS.

More Details

Systematic Study of Data Requirements and AMI Capabilities for Smart Meter Analytics

Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019

Ashok, Kavya; Reno, Matthew J.; Blakely, Logan; Divan, Deepak

Timeseries power and voltage data recorded by electricity smart meters in the US have been shown to provide immense value to utilities when coupled with advanced analytics. However, Advanced Metering Infrastructure (AMI) has diverse characteristics depending on the utility implementing the meters. Currently, there are no specific guidelines for the parameters of data collection, such as measurement interval, that are considered optimal, and this continues to be an active area of research. This paper aims to review different grid edge, delay tolerant algorithms using AMI data and to identify the minimum granularity and type of data required to apply these algorithms to improve distribution system models. The primary focus of this report is on distribution system secondary circuit topology and parameter estimation (DSPE).

More Details

Distribution System Parameter and Topology Estimation Applied to Resolve Low-Voltage Circuits on Three Real Distribution Feeders

IEEE Transactions on Sustainable Energy

Lave, Matt; Reno, Matthew J.; Peppanen, Jouni

Accurate distribution secondary low-voltage circuit models are needed to enhance overall distribution system operations and planning, including effective monitoring and coordination of distributed energy resources located in the secondary circuits. We present a full-scale demonstration across three real feeders of a computationally efficient approach for estimating the secondary circuit topologies and parameters using historical voltage and power measurements provided by smart meters. The method is validated against several secondary configurations, and compares favorably to satellite imagery and the utility secondary model. Feeder-wide results show how much parameters can vary from simple assumptions. Model sensitivities are tested, demonstrating only modest amounts of data and resolutions of data measurements are needed for accurate parameter and topology results.

More Details

Fault Current Control for DC Microgrid Protection Using an Adaptive Droop

IEEE International Symposium on Industrial Electronics

Augustine, Sijo; Brahma, Sukumar M.; Reno, Matthew J.

Successful system protection is critical to the performance of the DC microgrid system. This paper proposes an adaptive droop based fault current control for a standalone low voltage (LV) solar-photovoltaic (PV) based DC microgrid protection. In the proposed method, a DC microgrid fault is detected by the current and voltage thresholds. Generally, the droop method is used to control the power sharing between the converters by controlling the reference voltage. In this paper, this scheme is extended to control the fault current by calculating an adaptive virtual resistance Rdroop, and to control the converter output reference voltage. This effectively controls the converter pulse width, and reduces the flow of source current from a particular converter which helps to increase the fault clearing time. Additionally, a trip signal is sent to the corresponding DC circuit breaker (DCCB), to isolate the faulted converter, feeder or a DC bus. The design procedure is detailed, and the effectiveness of proposed method is verified by simulation analysis.

More Details

Visualization Methods for Quasi-Static Time-Series (QSTS) Simulations with High PV Penetration

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.; Lave, Matt

Distribution system analysis requires yearlong quasi-static time-series (QSTS) simulations to accurately capture the variability introduced by high penetrations of distributed energy resources (DER) such as residential and commercial-scale photovoltaic (PV) installations. Numerous methods are available that significantly reduce the computational time needed for QSTS simulations while maintaining accuracy. However, analyzing the results remains a challenge; a typical QSTS simulation generates millions of data points that contain critical information about the circuit and its components. This paper provides examples of visualization methods to facilitate the analysis of QSTS results and to highlight various characteristics of circuits with high variability.

More Details

Comparison of Ideal Transformer Method and Damping Impedance Method for PV Power-Hardware-In-The-Loop Experiments

Conference Record of the IEEE Photovoltaic Specialists Conference

Summers, Adam; Hernandez-Alvidrez, Javier; Darbali-Zamora, Rachid; Reno, Matthew J.; Johnson, Jay B.; Gurule, Nicholas S.

The Ideal Transformer Method (ITM) and the Damping Impedance Method (DIM) are the most widely used techniques for connecting power equipment to a Power-Hardware-in-the-Loop (PHIL) real-time simulation. Both methods have been studied for their stability and accuracy in PHIL simulations, but neither have been analyzed when the hardware is providing grid-support services with volt-var, frequency-watt, and fixed power factor functions. In this work, we experimentally validate the two methods of connecting a physical PV inverter to a PHIL system and evaluate them for dynamic stability and accuracy when operating with grid-support functions. It was found that the DIM Low Pass Lead Filter (LPF LD) method was the best under unity and negative power factor conditions, but the ITM LPF LD method was preferred under positive power factor conditions.

More Details

AMI Data Quality and Collection Method Considerations for Improving the Accuracy of Distribution Models

Conference Record of the IEEE Photovoltaic Specialists Conference

Blakely, Logan; Reno, Matthew J.; Ashok, Kavya

Spectral clustering is applied to the problem of phase identification of electric customers to investigate the data needs (resolution and accuracy) of advanced metering infrastructure (AMI). More accurate models are required to accurately interconnect high penetrations of PV/DER and for optimal electric grid operations. This paper demonstrates the effects of different data collection implementations and common errors in AMI datasets on the phase identification task. This includes measurement intervals, data resolution, collection periods, time synchronization issues, noisy measurements, biased meters, and mislabeled phases. High quality AMI data is a critical consideration to model correction and accurate hosting capacity analyses.

More Details

Comparison of Ideal Transformer Method and Damping Impedance Method for PV Power-Hardware-In-The-Loop Experiments

Conference Record of the IEEE Photovoltaic Specialists Conference

Summers, Adam; Hernandez-Alvidrez, Javier; Darbali-Zamora, Rachid; Reno, Matthew J.; Johnson, Jay B.; Gurule, Nicholas S.

The Ideal Transformer Method (ITM) and the Damping Impedance Method (DIM) are the most widely used techniques for connecting power equipment to a Power-Hardware-in-the-Loop (PHIL) real-time simulation. Both methods have been studied for their stability and accuracy in PHIL simulations, but neither have been analyzed when the hardware is providing grid-support services with volt-var, frequency-watt, and fixed power factor functions. In this work, we experimentally validate the two methods of connecting a physical PV inverter to a PHIL system and evaluate them for dynamic stability and accuracy when operating with grid-support functions. It was found that the DIM Low Pass Lead Filter (LPF LD) method was the best under unity and negative power factor conditions, but the ITM LPF LD method was preferred under positive power factor conditions.

More Details

Identifying Common Errors in Distribution System Models

Conference Record of the IEEE Photovoltaic Specialists Conference

Blakely, Logan; Reno, Matthew J.; Peppanen, Jouni

This paper discusses common types of errors that are frequently present in utility distribution system models and which can significantly influence distribution planning and operational assessments that rely on the model accuracy. Based on Google Earth imagery and analysis of correlation coefficients, this paper also illustrates some common error types and demonstrates methods to correct the errors. Error types include misla-beled interconnections between customers and service transformers, three-phase customers labeled as single-phase, unmarked transformers, and customers lacking coordinates. Identifying and correcting for these errors is critical for accurate distribution planning and operational assessments, such as load flow and hosting capacity analysis.

More Details

Distribution Feeder Fault Comparison Utilizing a Real-Time Power Hardware-in-the-Loop Approach for Photovoltaic System Applications

Conference Record of the IEEE Photovoltaic Specialists Conference

Darbali-Zamora, Rachid; Hernandez-Alvidrez, Javier; Summers, Adam; Gurule, Nicholas S.; Reno, Matthew J.; Johnson, Jay B.

Power outages are a challenge that utility companies must face, with the potential to affect millions of customers and cost billions in damage. For this reason, there is a need for developing approaches that help understand the effects of fault conditions on the power grid. In distribution circuits with high renewable penetrations, the fault currents from DER equipment can impact coordinated protection scheme implementations so it is critical to accurately analyze fault contributions from DER systems. To do this, MATLAB/Simulink/RT-Labs was used to simulate the reduced-order distribution system and three different faults are applied at three different bus locations in the distribution system. The use of Real-Time (RT) Power Hardware-in-the-Loop (PHIL) simulations was also used to further improve the fidelity of the model. A comparison between OpenDSS simulation results and the Opal-RT experimental fault currents was conducted to determine the steady-state and dynamic accuracy of each method as well as the response of using simulated and hardware PV inverters. It was found that all methods were closely correlated in steady-state, but the transient response of the inverter was difficult to capture with a PV model and the physical device behavior could not be represented completely without incorporating it through PHIL.

More Details

Distribution Feeder Fault Comparison Utilizing a Real-Time Power Hardware-in-the-Loop Approach for Photovoltaic System Applications

Conference Record of the IEEE Photovoltaic Specialists Conference

Darbali-Zamora, Rachid; Hernandez-Alvidrez, Javier; Summers, Adam; Gurule, Nicholas S.; Reno, Matthew J.; Johnson, Jay B.

Power outages are a challenge that utility companies must face, with the potential to affect millions of customers and cost billions in damage. For this reason, there is a need for developing approaches that help understand the effects of fault conditions on the power grid. In distribution circuits with high renewable penetrations, the fault currents from DER equipment can impact coordinated protection scheme implementations so it is critical to accurately analyze fault contributions from DER systems. To do this, MATLAB/Simulink/RT-Labs was used to simulate the reduced-order distribution system and three different faults are applied at three different bus locations in the distribution system. The use of Real-Time (RT) Power Hardware-in-the-Loop (PHIL) simulations was also used to further improve the fidelity of the model. A comparison between OpenDSS simulation results and the Opal-RT experimental fault currents was conducted to determine the steady-state and dynamic accuracy of each method as well as the response of using simulated and hardware PV inverters. It was found that all methods were closely correlated in steady-state, but the transient response of the inverter was difficult to capture with a PV model and the physical device behavior could not be represented completely without incorporating it through PHIL.

More Details

Visualization Methods for Quasi-Static Time-Series (QSTS) Simulations with High PV Penetration

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.; Lave, Matt

Distribution system analysis requires yearlong quasi-static time-series (QSTS) simulations to accurately capture the variability introduced by high penetrations of distributed energy resources (DER) such as residential and commercial-scale photovoltaic (PV) installations. Numerous methods are available that significantly reduce the computational time needed for QSTS simulations while maintaining accuracy. However, analyzing the results remains a challenge; a typical QSTS simulation generates millions of data points that contain critical information about the circuit and its components. This paper provides examples of visualization methods to facilitate the analysis of QSTS results and to highlight various characteristics of circuits with high variability.

More Details

Implementation of Temporal Parallelization for Rapid Quasi-Static Time-Series (QSTS) Simulations

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.; Montenegro, Davis

Quasi-static time-series (QSTS) analysis of distribution systems can provide critical information about the potential impacts of high penetrations of distributed and renewable resources, like solar photovoltaic systems. However, running high-resolution yearlong QSTS simulations of large distribution feeders can be prohibitively burdensome due to long computation times. Temporal parallelization of QSTS simulations is one possible solution to overcome this obstacle. QSTS simulations can be divided into multiple sections, e.g. into four equal parts of the year, and solved simultaneously with parallel computing. The challenge is that each time the simulation is divided, error is introduced. This paper presents various initialization methods for reducing the error associated with temporal parallelization of QSTS simulations and characterizes performance across multiple distribution circuits and several different computers with varying architectures.

More Details

Implementation of Temporal Parallelization for Rapid Quasi-Static Time-Series (QSTS) Simulations

Conference Record of the IEEE Photovoltaic Specialists Conference

Azzolini, Joseph A.; Reno, Matthew J.; Montenegro, Davis

Quasi-static time-series (QSTS) analysis of distribution systems can provide critical information about the potential impacts of high penetrations of distributed and renewable resources, like solar photovoltaic systems. However, running high-resolution yearlong QSTS simulations of large distribution feeders can be prohibitively burdensome due to long computation times. Temporal parallelization of QSTS simulations is one possible solution to overcome this obstacle. QSTS simulations can be divided into multiple sections, e.g. into four equal parts of the year, and solved simultaneously with parallel computing. The challenge is that each time the simulation is divided, error is introduced. This paper presents various initialization methods for reducing the error associated with temporal parallelization of QSTS simulations and characterizes performance across multiple distribution circuits and several different computers with varying architectures.

More Details

Grid-forming Inverter Experimental Testing of Fault Current Contributions

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Summers, Adam; Gonzalez, Sigifredo; Flicker, Jack D.

Historically, photovoltaic inverters have been grid-following controlled, but with increasing penetrations of inverter-based generation on the grid, grid-forming inverters (GFMI) are gaining interest. GFMIs can also be used in microgrids that require the ability to interact and operate with the grid (grid-tied), or to operate autonomously (islanded) while supplying their corresponding loads. This approach can substantially improve the response of the grid to severe contingencies such as hurricanes, or to high load demands. During islanded conditions, GFMIs play an important role on dictating the system's voltage and frequency the same way as synchronous generators do in large interconnected systems. For this reason, it is important to understand the behavior of such grid-forming inverters under fault scenarios. This paper focuses on testing different commercially available grid-forming inverters under fault conditions.

More Details

Simulation of Grid-Forming Inverters Dynamic Models using a Power Hardware-in-the-Loop Testbed

Conference Record of the IEEE Photovoltaic Specialists Conference

Hernandez-Alvidrez, Javier; Summers, Adam; Reno, Matthew J.; Flicker, Jack D.; Pragallapati, Nataraj

Modern power grids include a variety of renewable Distributed Energy Resources (DERs) as a strategy to comply with new environmental and renewable portfolio standards (RPSs) imposed by state and federal agencies. Typically, DERs include the use of power electronic (PE) interfaces to interactwith the power grid. Recently this interaction has not only been focused on supplying maximum available energy, but also on supporting the power grid under abnormal conditions such as low voltage/frequency conditions or non-unity power factor. Over the last few years, grid-following inverters (GFLIs) have proven their value while providing these ancillary grid-support services either at residential or utility scale. However, the use of grid-forming inverters (GFMIs) is gaining momentum as the penetration-level of DERs increases and system inertia decreases. Under abnormal operating conditions, GFMIs tend to better preserve grid stability due to their intrinsic ability to balance loadswithout the aid of coordination controls. In order to gain and propose fundamental insights into the interfacing of GFMIs to real time simulation, this paper analyzes the dynamics of two different GFMI simulation models in terms of stability and load changes using a Power Hardware-in-the-Loop (PHIL) simulation testbed.

More Details

Grid-forming Inverter Experimental Testing of Fault Current Contributions

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Summers, Adam; Gonzalez, Sigifredo; Flicker, Jack D.

Historically, photovoltaic inverters have been grid-following controlled, but with increasing penetrations of inverter-based generation on the grid, grid-forming inverters (GFMI) are gaining interest. GFMIs can also be used in microgrids that require the ability to interact and operate with the grid (grid-tied), or to operate autonomously (islanded) while supplying their corresponding loads. This approach can substantially improve the response of the grid to severe contingencies such as hurricanes, or to high load demands. During islanded conditions, GFMIs play an important role on dictating the system's voltage and frequency the same way as synchronous generators do in large interconnected systems. For this reason, it is important to understand the behavior of such grid-forming inverters under fault scenarios. This paper focuses on testing different commercially available grid-forming inverters under fault conditions.

More Details

Fault Current Correction Strategies for Effective Fault Location in Inverter-Based Systems

Conference Record of the IEEE Photovoltaic Specialists Conference

Matthews, Ronald C.; Hossain-McKenzie, Shamina S.; Reno, Matthew J.

The grid of the future will integrate various distributed energy resources (DERs), microgrids, and other new technologies that will revolutionize our energy delivery systems. These technologies, as well as proposed grid-support functions, require inverter-based systems to achieve incorporation into the overall system(s). However, the presence of inverters and other power electronics changes the behavior of the grid and renders many traditional tools and algorithms less effective. An inverter is typically designed to limit its own current output to avoid overloading. This can result in both voltage collapse at the inverter output and limited energy being delivered during a fault so that protective relays cannot respond properly. To avoid sustained faults and unnecessary loss of service, it is proposed that either supercapacitor or flywheel energy storage be utilized to energize faults upon overload of the inverter to achieve fault current correction. This paper will discuss these challenges for inverter-based system fault detection, explore fault current correction strategies, and provide MATLAB/Simulink simulation results comparing the effectiveness of each strategy.

More Details

Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries

2019 IEEE Power and Energy Conference at Illinois, PECI 2019

Blakely, Logan; Reno, Matthew J.; Feng, Wu

Smart grid technologies and wide-spread installation of advanced metering infrastructure (AMI) equipment present new opportunities for the use of machine learning algorithms paired with big data to improve distribution system models. Accurate models are critical in the continuing integration of distributed energy resources (DER) into the power grid, however the low-voltage models often contain significant errors. This paper proposes a novel spectral clustering approach for validating and correcting customer electrical phase labels in existing utility models using the voltage timeseries produced by AMI equipment. Spectral clustering is used in conjunction with a sliding window ensemble to improve the accuracy and scalability of the algorithm for large datasets. The proposed algorithm is tested using real data to validate or correct over 99% of customer phase labels within the primary feeder under consideration. This is over a 94% reduction in error given the 9% of customers predicted to have incorrect phase labels.

More Details

Inversion Reduction Method for Real and Complex Distribution Feeder Models

IEEE Transactions on Power Systems

Pecenak, Zachary K.; Disfani, Vahid R.; Reno, Matthew J.; Kleissl, Jan

The proliferation of distributed generation on distribution feeders triggers a large number of integration and planning studies. Further, the complexity of distribution feeder models, short simulation time steps, and long simulation horizons rapidly render studies computational burdensome. To mend this issue, we propose a methodology for reducing the number of nodes, loads, generators, line, and transformers of p-phase distribution feeders with unbalanced loads and generation, non-symmetric wire impedance, mutual coupling, shunt capacitance, and changes in voltage and phase. The methodology is derived on a constant power load assumption and employs a Gaussian elimination inversion technique to design the reduced feeder. Compared to previous work by the authors, the inversion reduction takes half the time and voltage errors after reduction are reduced by an order of magnitude. Using a snapshot simulation the reduction is tested on six additional publicly available feeders with a maximum voltage error 0.0075 p.u. regardless of feeder size or complexity, and typical errors on the order of 1 × 10 -4 p.u. For a day long quasi-static time series simulation on the UCSD A feeder, errors are shown to increase with changes in loading when a large number of buses removed, but shows less variation for less than 85% of buses removed.

More Details

Assessment of Existing Capabilities and Future Needs for Designing Networked Microgrids

Hossain-McKenzie, Shamina S.; Reno, Matthew J.; Eddy, John P.; Schneider, Kevin P.

This is a review of existing microgrid design tool capabilities, such as the Microgrid Design Tool (MDT), LANL PNNL NRECA Optimal Resilience Model (LPNORM), Distributed Energy Resource-Customer Adoption Model (DER-CAM), Renewable Energy Optimization (REopt), and the Hybrid Optimization Model for Multiple Energy Resources (HOMER). Additionally, other simulation and analysis tools which may provide fundamental support will be examined. These will include GridLAB-DTM, OpenDSS, and the hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). Their applicability to networked microgrid operations will be evaluated, and strengths and gaps of existing tools will be identified. This review will help to determine which elements of the proposed optimal design and operations (OD&D) tool should be formulated from first principles, and which elements should be integrated from past DOE investments.

More Details

A Fast Scalable Quasi-Static Time Series Analysis Method for PV Impact Studies Using Linear Sensitivity Model

IEEE Transactions on Sustainable Energy

Grijalva, Santiago; Reno, Matthew J.; Deboever, Jeremiah; Zhang, Xiaochen; Broderick, Robert J.

Understanding the impact of distributed photovoltaic (PV) resources on various elements of the distribution feeder is imperative for their cost effective integration. A year-long quasi-static time series (QSTS) simulation at 1-second granularity is often necessary to fully study these impacts. However, the significant computational burden associated with running QSTS simulations is a major challenge to their adoption. In this paper, we propose a fast scalable QSTS simulation algorithm that is based on a linear sensitivity model for estimating voltage-related PV impact metrics of a three-phase unbalanced, nonradial distribution system with various discrete step control elements including tap changing transformers and capacitor banks. The algorithm relies on computing voltage sensitivities while taking into account all the effects of discrete controllable elements in the circuit. Consequently, the proposed sensitivity model can accurately estimate the state of controllers at each time step and the number of control actions throughout the year. For the test case of a real distribution feeder with 2969 buses (5469 nodes), 6 load/PV time series power profiles, and 9 voltage regulating elements including controller delays, the proposed algorithm demonstrates a dramatic time reduction, more than 180 times faster than traditional QSTS techniques.

More Details

Algorithms to Effectively Quantize Scenarios for PV Impact Analysis using QSTS Simulation

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Deboever, Jeremiah; Grijalva, Santiago; Reno, Matthew J.; Broderick, Robert J.

Quasi-static time-series (QSTS) simulation provides an accurate method to determine the impact that new PV interconnections including control strategies would have on a distribution feeder. However, the QSTS computational time currently makes it impractical for use by the industry. A vector quantization approach [1- 2] leverages similarities in power flow solutions to avoid re-computing identical power flows resulting in significant time reduction. While previous work arbitrarily quantized similar power flow scenarios, this paper proposes a novel circuit-specific quantization algorithm to balance speed and accuracy. This sensitivity-based method effectively quantizes the power flow scenarios prior to running the quantized QSTS simulation. The results show vast computational time reduction while maintaining specified bounds for the error.

More Details

A Fast Quasi-Static Time Series Simulation Method for PV Smart Inverters with VAR Control using Linear Sensitivity Model

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Qureshi, Muhammad U.; Grijalva, Santiago; Reno, Matthew J.

Fast deployment of renewable energy resources in distribution networks, especially solar photovoltaic (PV) systems, have motivated the need for inverter-based voltage regulation. Integration studies are often necessary to fully understand the potential impacts of PV inverter settings on the various elements of the distribution system, including voltage regulators and capacitor banks. A year long quasi-static time series (QSTS) at second-level granularity provides a comprehensive assessment of these impacts, however the computational burden associated with running QSTS limits its applicability. This paper proposes a fast QSTS simulation technique capable of modeling the smart inverter dynamic VAR control functionality and accurately estimating the states of controllable elements including voltage regulators and capacitor banks at each time step. Consequently, the complex interactions between various legacy voltage regulation devices is also captured. The efficacy of the proposed algorithm is demonstrated on the IEEE 13-bus test case with a 98% reduction in computation time.

More Details

Optimal Siting of PV on the Distribution System with Smart Inverters

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Reno, Matthew J.; Broderick, Robert J.

As PV penetration on the distribution system increases, there is growing concern about how much PV each feeder can handle. A total of 14 medium-voltage distributions feeders from two utilities have been analyzed in detail for their individual PV hosting capacity and the locational PV hosting capacity at all the buses on the feeder. This paper discusses methods for analyzing PV interconnections with advanced simulation methods to study feeder and location-specific impacts of PV to determine the locational PV hosting capacity and optimal siting of PV. Investigating the locational PV hosting capacity expands the conventional analytical methods that study only the worst-case PV scenario. Previous methods are also extended to include single-phase PV systems, especially focusing on long single-phase laterals. Finally, the benefits of smart inverters with volt-var is analyzed to demonstrate the improvements in hosting capacity.

More Details
Results 101–200 of 350
Results 101–200 of 350