A New Monolithic Dielectric Resonator Metasurface Design for High Quality-Factor Fano Resonances
Abstract not provided.
Abstract not provided.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Microwave and Optical Technology Letters
In this article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). In addition to describing the methodology used to design a n = -1 refractive index prism, results including the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributions corresponding to a normally incident plane-wave excitation of the prism are presented.
Optics Express and arxiv
Abstract not provided.
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank
Abstract not provided.
When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.
This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.
Progress In Electromagnetics Research B
The voltage on a single-turn loop inside an enclosure characterizes the enclosure shielding effectiveness against a lightning insult. In this paper, the maximum induced voltage on a single-turn loop inside an enclosure from lightning coupling to a metal enclosure wall is expressed in terms of two multiplicative factors: (A) the normalized enclosure wall peak penetration ratio (i.e., ratio of the peak interior electric field multiplied by the sheet conductance to the exterior magnetic field) and (B) the DC voltage on an ideal optimum coupling loop assuming the ideal penetration ratio of one. As a result of the decomposition, the variation of the peak penetration ratio (A) for different coupling mechanisms is found to be small; the difference in the maximum voltage hence arises from the DC voltage on the optimum coupling loop (B). Maximum voltages on an optimum coupling loop inside a finite cylinder enclosure for direct attachment and a lightning line source at different distances from the enclosure are given in Table 3.
PIER
Abstract not provided.
PIER B
Abstract not provided.
Journal of Physics D - Applied Physics
Abstract not provided.
Electromagnetics
Abstract not provided.
Progress in Electromagnetics Research M
In this paper, fusing of a metallic conductor is studied by judiciously using the solution of the one-dimensional heat equation, resulting in an approximate method for determining the threshold fusing current. The action is defined as an integration of the square of the wire current over time. The burst action (the action required to completely vaporize the material) for an exploding wire is then used to estimate the typical wire gapping action (involving wire fusing), from which gapping time can be estimated for a gapping current greater than a factor of two over the fusing current. The test data are used to determine the gapped length as a function of gapping current and to show, for a limited range, that the gapped length is inversely proportional to gapping time. The gapping length can be used as a signature of the fault current level in microelectronic circuits.
This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.
Abstract not provided.
Abstract not provided.
Progress In Electromagnetics Research M
In this paper, linear lightning diffusion into a Faraday cage is studied. The high-altitude Electromagnetic Pulse (HEMP) and nearby lightning are used as examples for a uniform field drive and the direct-strike lightning adjacent to the enclosure is used as a worst-case configuration of a line source excitation. The time-derivative of the magnetic field (HDOT) inside the enclosure for a uniform field drive with a decaying exponential waveform is analyzed and numerically determined. The physically relevant time-derivative of the magnetic field and voltage characterizations of an optimum coupling loop inside the enclosure for a decaying exponential waveform in a worst-case line source coupling configuration are numerically determined. First, the impulse and the unit step response peaks are shown to bound the decaying exponential peaks. Next, a simple fit function for a decaying exponential peak HDOT or a voltage bound for a single-turn loop inside the Faraday cage is constructed from peak responses of the unit step and impulse limiting cases. Excitations used are from (1) a uniform field drive of HEMP or nearby lightning and (2) a line source of direct-strike lightning. Comparisons of HDOT and voltage bounds of the fit function and actual numerical evaluations are given in Table 3.
IEEE Transactions on Plasma Science
This paper discusses the penetration and coupling of a lightning return stroke through a hole in a metal barrier to a conductor located behind the hole. Indirect field coupling (electric and magnetic) and direct discharges are considered both analytically and experimentally. Although here we consider the hole to be preexisting, one application of this work is lightning return stroke coupling through holes burned in metallic barriers by the continuing current component of lightning. The goal is to develop an understanding of the mechanisms and expected penetrant levels in lightning burnthrough. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).
Digest of Technical Papers-IEEE International Pulsed Power Conference
The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.
IEEE Transactions on EMC
Abstract not provided.
IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)
In this paper a simple effective-media analysis (including higher-order multipoles) is used to design a single-resonator, negative-index design based on a metal-core, dielectric-shell (MCDS) unit cell. In addition to comparing the performance of the MCDS design to other core-shell negative-index designs, performance trade-offs resulting from the relative positioning of the electric and magnetic modal resonances in the MCDS design are also discussed. © 2011 IEEE.