Publications

Results 176–200 of 200

Search results

Jump to search filters

Dipole radiation from a cylindrical hole in the earth

Warne, Larry K.; Johnson, William A.

This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.

More Details

An improved statistical model for linear antenna input impedance in an electrically large cavity

Johnson, William A.; Jorgenson, Roy E.; Warne, Larry K.

This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

More Details

Capacitance and effective area of flush monopole probes

Basilio, Lorena I.; Warne, Larry K.; Johnson, William A.; Higgins, Matthew B.; Lehr, Jane

Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

More Details

Approximations to wire grid inductance

Proposed for publication in the Journal of Electrostatics.

Warne, Larry K.; Merewether, Kimball O.; Johnson, William A.

By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.

More Details

Long line coupling models

Warne, Larry K.; Chen, Kenneth C.

This report assembles models for the response of a wire interacting with a conducting ground to an electromagnetic pulse excitation. The cases of an infinite wire above the ground as well as resting on the ground and buried beneath the ground are treated. The focus is on the characteristics and propagation of the transmission line mode. Approximations are used to simplify the description and formulas are obtained for the current. The semi-infinite case, where the short circuit current can be nearly twice that of the infinite line, is also examined.

More Details

Ionization coefficient approach to modeling breakdown in nonuniform geometries

Warne, Larry K.; Jorgenson, Roy E.; Nicolaysen, Scott D.

This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.

More Details

Effect of Dielectric Photoemission on Surface Breakdown: An LDRD Report

Jorgenson, Roy E.; Warne, Larry K.

The research discussed in this report was conceived during our earlier attempts to simulate breakdown across a dielectric surface using a Monte Carlo approach. While cataloguing the various ways that a dielectric surface could affect the breakdown process, we found that one obvious effect--photoemission from the surface--had been ignored. Initially, we felt that inclusion of this effect could have a major impact on how an ionization front propagates across a surface because of the following argument chain: (1) The photon energy required to release electrons from a surface via photoemission is less than the photon energy required to ionize gas molecules directly. (2) The mean free path of a photon in gas is longer for low-energy photons than for high-energy photons. (3) Photoionization is a major effect in advancing the ionization front for breakdown in gas without a surface, therefore, we know that even high-energy photons can be released from the head of a streamer and propagate some distance through the gas. Our hypothesis, therefore, was that photons with energies near the threshold of photoemission could travel further in front of the streamer before being absorbed than higher-energy photons needed for photoionization, yet the lower-energy photons, with the help of the surface, could still create seed electrons for new avalanches. Thus, the streamer would advance more rapidly next to a surface than in gas alone. Additionally, the photoemission from the surface would add to the electrons in the avalanche and cause the avalanche to grow faster. After some study, however, we are forced to conclude that although photoemission does contribute to avalanche growth at fields near breakdown threshold, secondary electron emission causes electrons to stick to the surface and cancels out the growth due to photoemission. This conclusion assumes a discharge that occurs over a short period of time so that charging of the surface, which could alter its secondary electron emission characteristics, does not occur. This report documents the numerical work we did on investigating this effect and the experimental work we did on pre-breakdown phenomena in gas.

More Details

Assembly of LIGA using Electric Fields

Feddema, John T.; Warne, Larry K.; Johnson, William A.; Routson, Allison J.; Armour, David L.

The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

More Details

Useful Equations for Calculating the Induced Voltage Inside a Faraday Cage that has been Struck by Lightning

Jorgenson, Roy E.; Warne, Larry K.

One of the tasks performed routinely by the Electromagnetics and Plasma Physics Analysis Department at Sandia National Laboratories is analyzing the effects of direct-strike lightning on Faraday cages that protect sensitive items. The Faraday cages analyzed thus far have many features in common. This report is an attempt to collect equations and other information that have been routinely used in the past in order to facilitate future analysis.

More Details

Statistical Properties of Antenna Impedance in an Electrically Large Cavity

IEEE Transactions on Antennas and Propagation

Warne, Larry K.; Hudson, H.G.; Johnson, William A.; Jorgenson, Roy E.; Stronach, Stephen L.

This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

More Details

Lightning Induced Arcing an LDRD Report

Jorgenson, Roy E.; Warne, Larry K.

The purpose of this research was to develop a science-based understanding of the early-time behavior of electric surface arcing in air at atmospheric pressure. As a first step towards accomplishing this, we used a kinetic approach to model an electron swarm as it evolved in a neutral gas under the influence of an applied electric field. A computer code was written in which pseudo-particles, each representing some number of electrons, were accelerated by an electric field. The electric field due to the charged particles was calculated efficiently using a tree algorithm. Collision of the electrons with the background gas led to the creation of new particles through the processes of ionization and photoionization. These processes were accounted for using measured cross-section data and Monte Carlo methods. A dielectric half-space was modeled by imaging the charges in its surface. Secondary electron emission from the surface, resulting in surface charging, was also calculated. Simulation results show the characteristics of a streamer in three dimensions. A numerical instability was encountered before the streamer matured to form branching.

More Details

Some remarks on antenna response in a reverberation chamber

IEEE Transaction Electromagnetic Capabilities

Warne, Larry K.

The simple formula, {l_angle}P{sub r}{r_angle}=(E{sub o}{sup 2}/{eta})({lambda}{sup 2}/8{pi}), for the received power of an antenna with a matched load in an over-moded cavity actually holds for an antenna of any shape and size. This can be seen from the close connection between the correlation tensor of the cavity field at two different points and the imaginary part of the free-space dyadic Green's function.

More Details

Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavitivies

IEEE Applied Physics

Warne, Larry K.

A hybrid FEM/MoM model has been implemented to compute the coupling of fields into a cavity through narrow slot apertures having depth. The model utilizes the slot model of Warne and Chen [23]-[29] which takes into account the depth of the slot, wall losses, and inhomogeneous dielectrics in the slot region. The cavity interior is modeled with the mixed-order, covariant-projection hexahedral elements of Crowley [32]. Results are given showing the accuracy and generality of the method for modeling geometrically complex slot-cavity combinations.

More Details

Validation of EMP bounds

Warne, Larry K.

Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

More Details

Magnetic field diffusion modeling of a small enclosed firing system

Warne, Larry K.

Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.

More Details

A radial transmission line material measurement apparatus

Warne, Larry K.

A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.

More Details

Eddy current power dissipation at sharp corners

Warne, Larry K.

This paper develops corrections to the impedance per unit length when the conductor cross section includes sharp corners. The case of a right internal angle is treated in detail. Corrections are given for all values of the ratio of internal to external magnetic permeabilities. Both the real and imaginary parts of the corrections are determined. Application of the results to a conductor of square cross section is given. Higher order terms are developed and compared to a numerical solution.

More Details

Electromagnetic penetration of slot apertures with depth and losses

Warne, Larry K.

Typical aerospace joints lead to apertures which are very narrow and thick. We develop a systematic analytical treatment of this type of aperture (precise conditions of validity given in the text), although the results are also applicable to apertures on a thin conducting body. An antenna integral equation with an equivalent antenna radius is used to describe the voltage across a narrow and thick aperture in a perfectly conducting plane. The result shows the voltage across the aperture has very high Q (quality-factor) resonances, because the equivalent radius is exponentially small. Transmitted power also exhibits similar behavior. When metallic and gasket losses are included, a nonlocal antenna model together with a local transmission line model is used to describe the voltage across the aperture. Good metallic walls, such as aluminum, are found to significantly reduce the penetration of an aperture of typical dimensions. Gaskets with relatively small loss tangents also result in significant penetration reductions. A simple transmission line with uniform loading is used to approximate the governing equation described in. In the lossless limit and for moderate fatness parameter this simple transmission line model is comparable in accuracy to King's three-term theory. The loading of the bolts or hinges is demonstrated to act in many cases as a short. Finally, the low frequency penetration for a narrow slot aperture of arbitrary depth is characterized by the equivalent polarizabilities (dominating longitudinal component) as a function of the ratio of the depth to the width and ratio of the length to the width. A general relationship is shown to exist between the equivalent radius and the transverse line dipole moments of a slot aperture with depth. The longitudinal equivalent polarizabilities of antennas and slot apertures are used to derive a coupling energy bound for a step function EMP. 9 refs., 8 figs.

More Details

Experimental study of narrow slot, cavity-backed apertures with finite wall conductivity

Warne, Larry K.

Electromagnetic coupling to electronic components or subsystems is a concern in modern system design. Undesired coupling can cause interference or, in the extreme, system upset. To be able to characterize the coupling is an important step to understanding the limitations on system performance. Often the approach is taken to shield the electronic equipment inside some kind of enclosure. However, there are usually inadvertent cracks or bowing at mechanical interfaces. These gaps are apparent slot apertures. An equivalent antenna/local transmission line model for narrow slot apertures with depth including losses has been developed. It may be applied tortuous paths and hence may be used to model practical situations. This model has been previously verified by measuring the coupling through narrow slot apertures with varying width and depth. These measurements were performed for brass slots radiating into a half-space. The results were in good agreement with the model of Warne and Chen. The models, as well as the measurements showed that for very narrow slots the wall loss becomesdominant -- it has been demonstrated that the inclusion of loss is important in making realistic coupling estimates in practical configurations. This paper presents results showing the effects of varying conductivity and surface preparations for half-space coupling as well as different loadings of the narrow slot apertures. The coupling through narrow slot apertures having depth was measured for a variety of resonant cavity loadings. The loadings were chosen such that the cavity resonant frequencies were above, near and below the resonant peak of the half-space coupling curve. Measurements were made in the 2--4 GHz band with vertical polarization. 3 refs., 6 figs., 1 tab.

More Details
Results 176–200 of 200
Results 176–200 of 200