Publications

Results 1–25 of 194

Search results

Jump to search filters

Three-Dimensional Electromagnetic High Frequency Concave Cavity Scars

Warne, Larry K.; Jorgenson, Roy E.; Reines, Isak C.; Coats, Rebecca S.; Pack, Alden R.; Zinser, Brian

This report examines the localization of high frequency electromagnetic fields in general three-dimensional cavities along periodic paths between opposing sides of the cavity. The focus is on the case where the mirrors at the ends of the orbit are concave and have two different radii of curvature. The cases where these orbits lead to unstable localized modes are known as scars. The ellipsoidal coordinate system is utilized in the construction of the scarred modes. The field at the interior foci is examined as well as trigonometric projections along the periodic scarred ray path.

More Details

Maximum Interior Voltage and Magnetic Field Penetration Through a Ferromagnetic Layer

Warne, Larry K.; Chen, Kenneth C.; Johnson, William Arthur.

This report examines the problem of magnetic penetration of a conductive layer, including nonlinear ferromagnetic layers, excited by an electric current filament. The electric current filament is, for example, a nearby wire excited by a lightning strike. The internal electric field and external magnetic field are determined. Numerical results are compared to various analytical approximations to help understand the physics involved in the penetration.

More Details

Capacitive/Inductive Corrections for Numerical Implementation of Thin-Slot Transmission Line Models and Other Useful Formulas

Warne, Larry K.; Johnson, William Arthur.

Capacitance/inductance corrections for grid induced errors for a thin slot models are given for both one and four point testing on a rectangular grid for surface currents surrounding the slot. In addition a formula for translating from one equivalent radius to another is given for the thin-slot transmission line model. Additional formulas useful for this slot modeling are also given.

More Details

Eddy Current Power Dissipation at the Edge of a Thin Conductive Layer

Warne, Larry K.; Johnson, William Arthur.

A method used to solve the problem of water waves on a sloping beach is applied to a thin conducting half plane described by a thin layer impedance boundary condition. The solution for the electric field behavior near the edge is obtained and a simple fit for this behavior is given. This field is used to determine the correction to the impedance per unit length of a conductor due to a sharp edge. The results are applied to the strip conductor. The final appendix also discusses the solution to the dual-sided (impedance surface & perfect conductor surface) half plane problem.

More Details

Asymptotic Expansion of the Impedance Per Unit Length for Rectangular Conductors

Warne, Larry K.

An iteration method is introduced to obtain the asymptotic form of the impedance per unit length of a rectangular conductor when the half side lengths are large compared to the skin depth. The first terms of the asymptotic expansion are extracted in closed form. The manner in which the corner corrections fit into the expansion are illustrated. The asymptotic results are compared to a numerical solution in the square limit. The odd corner correction for a right angle edge is also discussed.

More Details

Three Dimensional Electromagnetic High Frequency Convex Cavity Scars

Warne, Larry K.; Jorgenson, Roy E.; Coats, Rebecca S.

This report examines the localization of high frequency electromagnetic fields in general three-dimensional convex walled cavities along periodic paths between opposing sides of the cavity. The report examines the three-dimensional case where the mirrors at the end of the orbit have two different radii of curvature. The cases where these orbits lead to unstable localized modes are known as scars.

More Details

Penetration Bounds For Azimuthal Slot On Infinite Cylinder With Finite Length Backing Cylindrical Cavity

Warne, Larry K.; Campione, Salvatore; Martin, Luis S.; Pack, Alden R.; Langston, William L.; Zinser, Brian F.

We examine coupling into azimuthal slots on an infinite cylinder with a infinite length interior cavity operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior as well as a half space approximation. Bounding calculations based on maximum slot power reception and interior power balance are also discussed in detail and compared with the prior calculations. For higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot operation to the nearest slot resonance; this is done in combination with maximizing the power reception as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality factor is considered below the first slot resonance.

More Details

Penetration through Slots in Overmoded Cavities

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.

A resonant cavity undergoes three distinct behaviors with increasing frequency: 1) fundamental modes, localized in frequency with well defined modal distribution; 2) undermoded region, where modes are still separated, but are sufficiently perturbed by small imperfections that their spectral positions (and distributions) are statistical in nature; and 3) overmoded region, where modes overlap, field distributions follow stochastic distributions, and the slot acts as if in free space. Understanding the penetration through slots in the overmoded region is of great interest, and is the focus of this article. Since full-wave solvers may not be able to provide a timely answer for very high frequencies due to a lack of memory and/or computation resources, we develop bounding methods to estimate worst-case average and maximum fields within the cavity. After discussing the bounding formulation, we compare its results to full-wave simulations at the first, second, and third resonance supported by the slot in the case of a cylindrical cavity. Note that the bounding formulation indicates that results are nearly independent of cavity shape: only the cavity volume, frequency, and cavity quality factor affect the overmoded region, making this formulation a powerful tool to assess electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details

Developing Uncertainty Quantification Strategies in Electromagnetic Problems Involving Highly Resonant Cavities

Journal of Verification, Validation and Uncertainty Quantification

Campione, Salvatore; Stephens, John A.; Martin, Nevin; Eckert, Aubrey C.; Warne, Larry K.; Huerta, Jose G.; Pfeiffer, Robert A.; Jones, Adam J.

High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification (UQ) strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness (SE) properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.

More Details

Modeling Coupling through an Electromagnetically Deep Slot Aperture

2021 International Conference on Electromagnetics in Advanced Applications, ICEAA 2021

Dang, Vinh Q.; Pfeiffer, Robert A.; Warne, Larry K.; Johnson, William Arthur.; Kotulski, J.D.; Wallace, Jon W.; Pack, Alden R.; Krueger, Aaron M.; Zinser, Brian; Langston, William L.

Metallic enclosures are commonly used to protect electronic circuits against unwanted electromagnetic (EM) interactions. However, these enclosures may be sealed with imperfect mechanical seams or joints. These joints form narrow slots that allow external EM energy to couple into the cavity and then to the internal circuits. This coupled EM energy can severely affect circuit operations, particularly at the cavity resonance frequencies when the cavity has a high Q factor. To model these slots and the corresponding EM coupling, a thin-slot sub-cell model [1] , developed for slots in infinite ground plane and extended to numerical modeling of cavity-backed apertures, was successfully implemented in Sandia's electromagnetic code EIGER [2] and its next-generation counterpart Gemma [3]. However, this thin-slot model only considers resonances along the length of the slot. At sufficiently high frequencies, the resonances due to the slot depth must also be considered. Currently, slots must be explicitly meshed to capture these depth resonances, which can lead to low-frequency instability (due to electrically small mesh elements). Therefore, a slot sub-cell model that considers resonances in both length and depth is needed to efficiently and accurately capture the slot coupling.

More Details

Penetration through slots in cylindrical cavities with cavity modes overlapping with the first slot resonance

Electromagnetics

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Gutierrez, Roy K.; Hicks, Jeorge W.; Reines, Isak C.; Pfeiffer, Robert A.; Himbele, John J.; Williams, Jeffery T.

We analyze the coupling into a slotted cylindrical cavity operating at fundamental cavity modal frequencies overlapping with the slot’s first resonance frequency through an unmatched formulation that accounts for the slot’s absorption and radiation processes. The model is validated through full-wave simulations and experimental data. We then couple the unmatched formulation to a perturbation theory model to investigate an absorber within the cavity to reduce the interior field strength, also validated with full-wave simulations and experiments. These models are pivotal to understanding the physical processes involved in the electromagnetic penetration through slots, and may constitute design tools to mitigate electromagnetic interference effects within cavities.

More Details

Estimation of the Attenuation Caused by Power Line Towers on an E1-HEMP Induced Excitation

Martin, Luis S.; Warne, Larry K.

In a transmission line, the coupling between a line and a tower above ground is evaluated when the excitation is an E1 high-altitude electromagnetic pulse (HEMP). The model focuses on capturing correctly the effect of the coupling on the peak of the HEMP induced current that propagates along the line. This assessment is necessary to accurately estimate the effect of the excitation on the systems and components of the power grid. This analysis is a step towards a quantitative evaluation of HEMP excitation on the power grid. The results obtained indicate that the effect can be significant, especially for lines heights of 20 meters or more.

More Details

Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Pfeiffer, Robert A.; Martin, Nevin S.; Williams, Jeffery T.; Gutierrez, Roy K.; Reines, Isak C.; Huerta, Jose G.; Dang, Vinh Q.

In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details

Substation Cable Layouts for EMP Coupling Analysis

Pfeiffer, Robert A.; Llanes, Rodrigo E.; Warne, Larry K.; Halligan, Matthew H.

Direct coupling of early-time high-altitude electromagnetic pulse (HEMP) to substation control cables is simulated for cable layouts based on surveys of seven electrical substations in the United States. An analytic transmission line modeling code is used to estimate worst-case coupled current at the terminations of cable segments in or near the control shack. Where applicable, an induced voltage due to cable shield grounding is also estimated. Various configurations are simulated, including cables with different elevations, lengths, radii, and terminations. Plots of the coupled HEMP effects are given, and general relationships between these effects and the substations geometric and material parameters are highlighted and discussed.

More Details

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross G.; Lawton, Craig R.; Halligan, Matthew H.; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew J.; Bowman, Tyler B.; Campione, Salvatore; Clem, Paul G.; Fiero, Andrew; Hansen, Clifford H.; Llanes, Rodrigo E.; Pfeiffer, Robert A.; Pierre, Brian J.; Martin, Luis S.; Sanabria, David; Schiek, Richard S.; Slobodyan, Oleksiy S.; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details

Diffusion Models to Construct a First Principles Multipole-Based Cable Braid Model for Conducting Wires in the Time Domain

Campione, Salvatore; Warne, Larry K.

We describe here diffusion models apt to construct a multipole-based, cable braid time domain model for conducting wires. Implementation details of both a ladder network valid for time-domain signals with all frequency content and an approximate single-stage circuit valid for low-frequency dominated time signals (such as electromagnetic pulses) are reported. This time domain model can be leveraged to treat system-generated electromagnetic pulse events, as well as used to further confirm the correctness of the multipole-based, cable braid frequency domain model.

More Details

Effect of Line-Tower Coupling on E1 Pulse Excitation of an Electrical Transmission Line

2020 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2020

Martin, Luis S.; Warne, Larry K.; Campione, Salvatore; Halligan, Matthew H.; Guttromson, Ross G.

In a transmission line, we evaluate the coupling between a line and a tower above ground when the excitation is an El high-altitude electromagnetic pulse (HEMP). Our model focuses on capturing correctly the effect of the coupling on the peak of the HEMP induced current that propagates along the line. This assessment is necessary to accurately estimate the effect of the excitation on the systems and components of the power grid. This analysis is a step towards a quantitative evaluation of HEMP excitation on the power grid.

More Details

Double exponential approximation and inverse double exponential fit for Bell Labs and International-Military Standard EMP waveforms

Campione, Salvatore; Warne, Larry K.

We summarize here the double exponential and inverse double exponential approximations for two common EMP waveforms, the Bell Laboratories (Bell Labs) and the International- military standard (IEC-MIL-STD). Both models have been used frequently due to their relatively easy analytical expressions for both the time domain waveforms and their associated frequency domain spectra.

More Details
Results 1–25 of 194
Results 1–25 of 194