We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.
Calculation of the power flow from the 36 pulse forming lines to the vacuum region of Saturn has always been complicated by the three-dimensional structure of the rod and bottle connections to the vacuum insulator stack. Recently we have completed a 3-D calculation of the bottle configuration and found a large error in previous impedance estimates. We have used this calculation to determine impedance and to construct a 2-D model of each of the 36 bottles of each level of the insulator using the Transmission Line Matrix (TLM) technique. These TLM models are then used in a 2-D model for each of the three levels of the insulator. Each model starts at a measured forward-going pulse in the water tri-plate and ends at the Brehmstrahlung load at the center of the machine. Because of long transmission line lengths and short pulse lengths, each level can be considered independent of the others. A combination of the three models then represents a quasi-3-D model of the load region of the machine. The results of these calculations agree well with measurement and thereby provide confidence in simulation predictions for those areas where measurements are not possible. Details of the 3-D bottle calculation, the TLM model, and results of the load region simulations using this model are given.
The electric field strength between the cathode and anode (i.e., the voltage) of a pulsed power machine is one of the most important operating parameters of the device. However, to date, accurate and precise voltage measurements on these high energy pulsed power systems have proved difficult if not virtually impossible to perform. In many cases, the measurements to be performed take place in an environment cluttered with electromagnetic interference (EMI), radio frequency interference (RFI), and electron pollution, and there is the potential for electrical discharge (or arcing), there is limited physical access, or the measurement area is deemed unsuitable due to radiation safety concerns. We report on an electro-optical-based approach to measuring strong, narrow-pulse-width electric fields that requires no interfering metallic probes or components to disturb the field to be measured. Here we focus on device theory, operating parameters and a laboratory experiment.
Saturn is a short-pulse ( 40 ns FWHM) x-ray generator capable of delivering up 10 MA into a bremsstrahlung diode to yield up 5 × 10^12 rad/s (Si) per shot at an energy of 1 to 2 MeV. With the machine now over 30 years old it is necessary to rebuild and replace many components, upgrade controls and diagnostics, design for more reliability and reproducibility, and, as possible upgrade the accelerator to produce more current at a low voltage ( 1 MV or lower). Thus it has been necessary to reevaluate machine design parameters. The machine is modeled as a simple LR circuit driven with an equivalent a sine-squared drive waveform as peak voltage, drive impedance, and vacuum inductance are varied. Each variation has implications for vacuum insulator voltage, diode voltage, diode impedance, and radiation output. For purposes of this study, radiation is scaled as the diode current times the diode voltage raised to the 2.7 power. Results of parameter scans are presented and used to develop a design that optimizes radiation output. Results indicate that to maintain the existing short pulse length of the machine but to increase output it is most beneficial to operate at an even higher impedance than originally designed. Also discussed are critical improvements that need to be made.
Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.
Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores and other cavity components. Experimental results will be presented at the Conference and in future publications.
In addressing the issue of the determining the hazard categorization of the Z Accelerator of doing Special Nuclear Material (SNM) experiments the question arose as to whether the machine could be fired with its central vacuum chamber open, thus providing a path for airborne release of SNM materials. In this report we summarize calculations that show that we could only expect a maximum current of 460 kA into such a load in a long-pulse mode, which will be used for the SNM experiments, and 750 kA in a short-pulse mode, which is not useful for these experiments. We also investigated the effect of the current for both cases and found that for neither case is the current high enough to either melt or vaporize these loads, with a melt threshold of 1.6 MA. Therefore, a necessary condition to melt, vaporize, or otherwise disperse SNM material is that a vacuum must exist in the Z vacuum chamber. Thus the vacuum chamber serves as a passive feature that prevents any airborne release during the shot, regardless of whatever containment may be in place.
Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.