Publications

Results 51–75 of 195

Search results

Jump to search filters

Arctic Tipping Points Triggering Global Change (LDRD Final Report)

Peterson, Kara J.; Powell, Amy J.; Kalashnikova, Irina; Roesler, Erika L.; Nichol, Jeffrey N.; Peterson, Matthew G.; Davis, Warren L.; Jakeman, John D.; Stracuzzi, David J.; Bull, Diana L.

The Arctic is warming and feedbacks in the coupled Earth system may be driving the Arctic to tipping events that could have critical downstream impacts for the rest of the globe. In this project we have focused on analyzing sea ice variability and loss in the coupled Earth system Summer sea ice loss is happening rapidly and although the loss may be smooth and reversible, it has significant consequences for other Arctic systems as well as geopolitical and economic implications. Accurate seasonal predictions of sea ice minimum extent and long-term estimates of timing for a seasonally ice-free Arctic depend on a better understanding of the factors influencing sea ice dynamics and variation in this strongly coupled system. Under this project we have investigated the most influential factors in accurate predictions of September Arctic sea ice extent using machine learning models trained separately on observational data and on simulation data from five E3SM historical ensembles. Monthly averaged data from June, July, and August for a selection of ice, ocean, and atmosphere variables were used to train a random forest regression model. Gini importance measures were computed for each input feature with the testing data. We found that sea ice volume is most important earlier in the season (June) and sea ice extent became a more important predictor closer to September. Results from this study provide insight into how feature importance changes with forecast length and illustrates differences between observational data and simulated Earth system data. We have additionally performed a global sensitivity analysis (GSA) using a fully coupled ultra- low resolution configuration E3SM. To our knowledge, this is the first global sensitivity analysis involving the fully-coupled E3SM Earth system model. We have found that parameter variations show significant impact on the Arctic climate state and atmospheric parameters related to cloud parameterizations are the most significant. We also find significant interactions between parameters from different components of E3SM. The results of this study provide invaluable insight into the relative importance of various parameters from the sea ice, atmosphere and ocean components of the E3SM (including cross-component parameter interactions) on various Arctic-focused quantities of interest (QOIs).

More Details

Arctic Coastal Erosion: Modeling and Experimentation

Bull, Diana L.; Bristol, Emily M.; Brown, Eloise; Choens, Robert C.; Connolly, Craig T.; Flanary, Christopher; Frederick, Jennifer M.; Jones, Benjamin M.; Jones, Craig A.; Ward Jones, Melissa; Mcclelland, James W.; Mota, Alejandro M.; Kalashnikova, Irina

Increasing Arctic coastal erosion rates have put critical infrastructure and native communities at risk while also mobilizing ancient organic carbon into modern carbon cycles. Although the Arctic comprises one-third of the global coastline and has some of the fastest eroding coasts, current tools for quantifying permafrost erosion are unable to explain the episodic, storm-driven erosion events. Our approach, mechanistically coupling oceanographic predictions with a terrestrial model to capture the thermo-mechanical dynamics of erosion, enables this much needed treatment of transient erosion events. The Arctic Coastal Erosion Model consists of oceanographic and atmospheric boundary conditions that force a coastal terrestrial permafrost environment in Albany (a multi-physics based finite element model). An oceanographic modeling suite (consisting of WAVEWATCH III, Delft3D-FLOW, and Delft3D-WAVE) produced time-dependent surge and run-up boundary conditions for the terrestrial model. In the terrestrial model, a coupling framework unites the mechanical and thermal aspects of erosion. 3D stress/strain fields develop in response to a plasticity model of the permafrost that is controlled by the frozen water content determined by modeling 3D heat conduction and solid-liquid phase change. This modeling approach enables failure from any allowable deformation (block failure, slumping, etc.). Extensive experimental work has underpinned the ACE Model development including field campaigns to measure in situ ocean and erosion processes, strength properties derived from thermally driven geomechanical experiments, as well as extensive physical composition and geochemical analyses. Combined, this work offers the most comprehensive and physically grounded treatment of Arctic coastal erosion available in the literature. The ACE model and experimental results can be used to inform scientific understanding of coastal erosion processes, contribute to estimates of geochemical and sediment land-to-ocean fluxes, and facilitate infrastructure susceptibility assessments.

More Details

Predicting Future Disease Burden in a Rapidly Changing Climate

Powell, Amy J.; Kalashnikova, Irina; Davis, Warren L.; Peterson, Kara J.; Rempe, Susan R.; Smallwood, Chuck R.; Roesler, Erika L.

The interplay of a rapidly changing climate and infectious disease occurrence is emerging as a critical topic, requiring investigation of possible direct, as well as indirect, connections between disease processes and climate-related variation and phenomena. First, we introduce and overview three infectious disease exemplars (dengue, influenza, valley fever) representing different transmission classes (insect-vectored, human-to-human, environmentally-transmitted) to illuminate the complex and significant interplay between climate disease processes, as well as to motivate discussion of how Sandia can transform the field, and change our understanding of climate-driven infectious disease spread. We also review state-of-the-art epidemiological and climate modeling approaches, together with data analytics and machine learning methods, potentially relevant to climate and infectious disease studies. We synthesize the modeling and disease exemplars information, suggesting initial avenues for research and development (R&D) in this area, and propose potential sponsors for this work. Whether directly or indirectly, it is certain that a rapidly changing climate will alter global disease burden. The trajectory of climate change is an important control on this burden, from local, to regional and global scales. The efforts proposed herein respond to the National Research Councils call for the creation of a multidisciplinary institute that would address critical aspects of these interlocking, cascading crises.

More Details

HOMMEXX 1.0: A performance-portable atmospheric dynamical core for the Energy Exascale Earth System Model

Geoscientific Model Development

Bertagna, Luca B.; Deakin, Michael; Guba, Oksana G.; Sunderland, Daniel S.; Bradley, Andrew M.; Kalashnikova, Irina; Taylor, Mark A.; Salinger, Andrew G.

We present an architecture-portable and performant implementation of the atmospheric dynamical core (High-Order Methods Modeling Environment, HOMME) of the Energy Exascale Earth System Model (E3SM). The original Fortran implementation is highly performant and scalable on conventional architectures using the Message Passing Interface (MPI) and Open MultiProcessor (OpenMP) programming models. We rewrite the model in C++ and use the Kokkos library to express on-node parallelism in a largely architecture-independent implementation. Kokkos provides an abstraction of a compute node or device, layout-polymorphic multidimensional arrays, and parallel execution constructs. The new implementation achieves the same or better performance on conventional multicore computers and is portable to GPUs. We present performance data for the original and new implementations on multiple platforms, on up to 5400 compute nodes, and study several aspects of the single-and multi-node performance characteristics of the new implementation on conventional CPU (e.g., Intel Xeon), many core CPU (e.g., Intel Xeon Phi Knights Landing), and Nvidia V100 GPU.

More Details

Toward performance portability of the Albany finite element analysis code using the Kokkos library

International Journal of High Performance Computing Applications

Demeshko, Irina; Watkins, Jerry E.; Kalashnikova, Irina; Guba, Oksana G.; Spotz, William S.; Salinger, Andrew G.; Pawlowski, Roger P.; Heroux, Michael A.

Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This article presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We present performance results for the Aeras global atmosphere dynamical core module in Albany. Numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.

More Details
Results 51–75 of 195
Results 51–75 of 195